

V	Final Report
	Revised Report

Report Date: 26-Jul-17 13:25

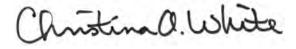
Laboratory Report SC36391

Gulf Oil L.P. 281 Eastern Avenue Chelsea, MA 02150 Attn: Andrew P. Adams

Project: Gulf Terminal - Chelsea, MA

Project #: Gulf Chelsea

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.


All applicable NELAC requirements have been met.

Massachusetts # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87936 Maine # MA138 New Hampshire # 2972/2538 New Jersey # MA011 New York # 11393 Pennsylvania # 68-04426/68-02924 Rhode Island # LAO00348 USDA # P330-15-00375 Vermont # VT-11393

Authorized by:

Christina White Laboratory Director

Eurofins Spectrum Analytical holds primary certification in the State of Massachusetts for the analytes as indicated with an X in the "Cert." column within this report. Please note that the State of Massachusetts does not offer certification for all analytes. Please refer to our website for specific certification holdings in each state.

Please note that this report contains 28 pages of analytical data plus Chain of Custody document(s). When the Laboratory Report is indicated as revised, this report supersedes any previously dated reports for the laboratory ID(s) referenced above. Where this report identifies subcontracted analyses, copies of the subcontractor's test report are available upon request. This report may not be reproduced, except in full, without written approval from Eurofins Spectrum Analytical, Inc.

Eurofins Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Eurofins Spectrum Analytical, Inc. is currently accredited for the specific method or analyte indicated. Please refer to our Quality'web page at www.spectrum-analytical.com for a full listing of our current certifications and fields of accreditation. States in which Eurofins Spectrum Analytical, Inc. holds NELAC certification are New York, New Hampshire, New Jersey, Pennsylvania and Florida. All analytical work for Volatile Organic and Air analysis are transferred to and conducted at our 830 Silver Street location (PA-68-04426).

Please contact the Laboratory or Technical Director at 800-789-9115 with any questions regarding the data contained in this laboratory report.

Sample Summary

Work Order: SC36391

Project: Gulf Terminal - Chelsea, MA

Project Number: Gulf Chelsea

<u>Laboratory ID</u>	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SC36391-01	Chelsea Creek	Surface Water	27-Jun-17 10:00	28-Jun-17 14:05
SC36392-01	Outfall 003	Surface Water	27-Jun-17 10:00	28-Jun-17 14:05

CASE NARRATIVE:

Data has been reported to the MDL. This report includes estimated concentrations detected below the RDL and above the MDL (J-Flag).

All non-detects and all results below the detection limit are reported as "<" (less than) the detection limit in this report.

The samples were received 3.2 degrees Celsius, please refer to the Chain of Custody for details specific to temperature upon receipt. An infrared thermometer with a tolerance of +/- 1.0 degrees Celsius was used immediately upon receipt of the samples.

If a Matrix Spike (MS), Matrix Spike Duplicate (MSD) or Duplicate (DUP) was not requested on the Chain of Custody, method criteria may have been fulfilled with a source sample not of this Sample Delivery Group.

Analyses for Total Hardness, pH, and Total Residual Chlorine fall under the state of Pennsylvania code Chapter 252.6 accreditation by rule.

Please note this report contains 30 pages of analytical data from New England Boiassay, A division of GZA.

See below for any non-conformances and issues relating to quality control samples and/or sample analysis/matrix.

EPA 200.8

Spikes:

1712715-MS1 Source: SC36391-01

The spike recovery was outside acceptance limits for the MS, MSD and/or PS due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

Copper

1712715-PS1 Source: SC36391-01

The spike recovery was outside acceptance limits for the MS, MSD and/or PS due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

Copper

Duplicates:

1712715-DUP1 Source: SC36391-01

RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

Copper

Nickel

The Reporting Limit has been raised to account for matrix interference.

Cadmium

Copper

Lead

Nickel

1712781-DUP1 Source: SC36391-01

The Reporting Limit has been raised to account for matrix interference.

Zinc

Samples:

SC36391-01 Chelsea Creek

EPA 200.8

Samples:

SC36391-01 Chelsea Creek

The Reporting Limit has been raised to account for matrix interference.

Cadmium

Copper

Lead

Nickel Zinc

SM 9222D-97

Samples:

SC36392-01

Outfall 003

This sample was analyzed outside the EPA recommended holding time per client request.

Fecal Coliforms

SW846 8260C

Calibration:

1706082

Analyte quantified by quadratic equation type calibration.

Naphthalene

This affected the following samples:

1711116-BLK1

1711116-BLK2

1711116-BS1

1711116-BS2

1711116-BSD1

1711116-BSD2

Chelsea Creek

Outfall 003

S705740-ICV1

S705898-CCV1

Laboratory Control Samples:

1711116 BS/BSD

Tert-Butanol / butyl alcohol percent recoveries (137/121) are outside individual acceptance criteria (70-130), but within overall method allowances. All reported results of the following samples are considered to have a potentially high bias:

Outfall 003

1711116 BSD

Ethanol RPD 43% (20%) is outside individual acceptance criteria.

Tert-Butanol / butyl alcohol RPD 21% (20%) is outside individual acceptance criteria.

SW846 8270D

Calibration:

1706036

SW846 8270D

Calibration:

1706036

Analyte quantified by quadratic equation type calibration.

2,4-Dinitrophenol

4,6-Dinitro-2-methylphenol

This affected the following samples:

1711096-BLK1

1711096-BS1

1711096-BSD1

Outfall 003

S705262-ICV1

S706037-CCV1

S706219-CCV1

Samples:

SC36392-01

Outfall 003

Duplicate analysis confirmed surrogate failure due to matrix effects.

2-Fluorophenol

Phenol-d5

SC36392-01RE1

Outfall 003

Duplicate analysis confirmed surrogate failure due to matrix effects.

2-Fluorophenol

Phenol-d5

SW846 8270D SIM

Calibration:

1704025

Analyte quantified by quadratic equation type calibration.

Benzo (a) pyrene

Benzo (b) fluoranthene

Benzo (e) pyrene-d12

Benzo (g,h,i) perylene

Benzo (k) fluoranthene

Dibenzo (a,h) anthracene

Indeno (1,2,3-cd) pyrene

This affected the following samples:

1711096-BLK2

1711096-BS2

1711096-BSD2

Chelsea Creek

Outfall 003

S703654-ICV1

S706180-CCV1

S706181-CCV1

Samples:

S706180-CCV1

SW846 8270D SIM

Samples:

S706180-CCV1

Analyte percent drift is outside individual acceptance criteria (20), but within overall method allowances.

Benzo (k) fluoranthene (24.8%)

This affected the following samples:

1711096-BLK2

1711096-BS2

1711096-BSD2

Chelsea Creek

Outfall 003

Sample Acceptance Check Form

Project:	Gulf Terminal - Chelsea, MA / Gulf Chelsea			
Work Order:	SC36391			
Sample(s) received on:	6/28/2017			
The following outlines th	he condition of samples for the attached Chain of Custody upon receipt.			
		Yes	<u>No</u>	<u>N/A</u>
Were custody se	als present?		\checkmark	
Were custody se	als intact?			\checkmark
Were samples re	ceived at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples re	frigerated upon transfer to laboratory representative?	\checkmark		
Were sample con	ntainers received intact?	\checkmark		
	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	$\overline{\checkmark}$		
Were samples ac	companied by a Chain of Custody document?	\checkmark		
include sample I	Sustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?			
Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		
Were samples re	ceived within method-specific holding times?	\checkmark		

Client:

Gulf Oil L.P.

Sample Acceptance Check Form

Project:	Gulf Terminal - Chelsea, MA / Gulf Chelsea			
Work Order:	SC36392			
Sample(s) received on:	6/28/2017			
The following outlines th	ne condition of samples for the attached Chain of Custody upon receipt.			
		Yes	No	N/A
Were custody se	als present?		\overline{iggr}	
Were custody se	als intact?			\checkmark
Were samples re	ceived at a temperature of $\leq 6^{\circ}$ C?	\checkmark		
Were samples re	frigerated upon transfer to laboratory representative?	\checkmark		
Were sample con	ntainers received intact?	\checkmark		
	operly labeled (labels affixed to sample containers and include sample ID, site project number and the collection date)?	\overline{V}		
Were samples ac	companied by a Chain of Custody document?	\checkmark		
include sample I	ustody document include proper, full, and complete documentation, which shall D, site location, and/or project number, date and time of collection, collector's name, e, sample matrix and any special remarks concerning the sample?			
Did sample cont	ainer labels agree with Chain of Custody document?	\checkmark		
Were samples re	ceived within method-specific holding times?	$\overline{\langle}$	П	П

Client:

Gulf Oil L.P.

Summary of Hits

Client ID:

Chelsea Creek

mg/l

mg/l

mg/l

SM2540D (11)

SM4500-Cl-G (11)

SM5310B (00, 11)

Lab ID: SC36391-01

Total Suspended Solids

Total Residual Chlorine

Total Organic Carbon

Result Units **Analytical Method Parameter Reporting Limit** 0.10 0.05 E350.1 Ammonia as Nitrogen mg/L 0.00019 Cadmium R01, J, 0.00125 EPA 200.8 mg/lCopper 0.194 R01, D 0.00250 mg/lEPA 200.8 0.00184 EPA 200.8 Lead R01, D 0.00125 mg/l Nickel 0.0166 R01, D 0.00125 EPA 200.8 mg/l0.0209 Zinc R01, J 0.0250 EPA 200.8 mg/lSalinity 24.6 1.00 ppt (1000) SM 2520 (01) **Total Solids** 29000 100 mg/lSM2540 B (11)

0.8

0.020

1.00

Lab ID: SC36392-01 Client ID: Outfall 003

9.0

0.028

3.28

Parameter	Result	Flag	Reporting Limit	Units	Analytical Method
Ammonia as Nitrogen	0.26		0.05	mg/L	E350.1
Total Solids	488		5.00	mg/l	SM2540 B (11)
Total Suspended Solids	10.3		0.8	mg/l	SM2540D (11)
Total Residual Chlorine	0.066		0.020	mg/l	SM4500-Cl-G (11)
Total Organic Carbon	7.18		1.00	mg/l	SM5310B (00, 11)
Zinc	0.011		0.002	mg/L	SW6010C
Chromium	0.0133		0.0050	mg/L	SW6020B
Lead	0.0067		0.0004	mg/L	SW6020B
Nickel	0.0045		0.0005	mg/L	SW6020B

Please note that because there are no reporting limits associated with hazardous waste characterizations or micro analyses, this summary does not include hits from these analyses if included in this work order.

Sample Id Chelsea C SC36391-					Project # Chelsea	:	Matrix Surface W	-	ection Date 7-Jun-17 10			ceived Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile On	rganic Compounds												
Volatile Or	rganic Aromatics by SW84	16 8260											
Prepared	by method SW846 5030 V	Vater MS											
71-43-2	Benzene	< 1.0		μg/l	1.0	0.3	1	SW846 8260C	30-Jun-17	30-Jun-17	GMA	1711116	
100-41-4	Ethylbenzene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	
91-20-3	Naphthalene	< 1.0		μg/l	1.0	0.4	1	"	"	"	"	"	
108-88-3	Toluene	< 1.0		μg/l	1.0	0.3	1	"	"	"	"	"	
179601-23-1	m,p-Xylene	< 2.0		μg/l	2.0	0.4	1	"	"	"	"	"	
95-47-6	o-Xylene	< 1.0		μg/l	1.0	0.3	1	"	u	"	"	"	
Surrogate r	recoveries:												
460-00-4	4-Bromofluorobenzene	103			70-13	80 %		"	n	"	"	"	
2037-26-5	Toluene-d8	103			70-13	80 %		II .	n n	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	103			70-13	80 %		II .	n n	"	"	"	
1868-53-7	Dibromofluoromethane	102			70-13	80 %		"	"	"	"		
Semivolati	le Organic Compounds by	GCMS											
SVOCs by	y SIM												
	by method SW846 3510C	_											
83-32-9	Acenaphthene	< 0.049		μg/l	0.049	0.007	1	SW846 8270D SIM	30-Jun-17	10-Jul-17	MSL	1711096	
208-96-8	Acenaphthylene	< 0.049		μg/l	0.049	0.013	1	"	"	"	"	"	
120-12-7	Anthracene	< 0.049		μg/l	0.049	0.008	1	"	"	"	"	"	
56-55-3	Benzo (a) anthracene	< 0.049		μg/l	0.049	0.017	1	"	"	"	"	"	
50-32-8	Benzo (a) pyrene	< 0.049		μg/l	0.049	0.020	1	"	"	"	"	"	
205-99-2	Benzo (b) fluoranthene	< 0.049		μg/l	0.049	0.020	1	"	II .	"	"	"	
191-24-2	Benzo (g,h,i) perylene	< 0.049		μg/l	0.049	0.019	1	"	"	"	"	"	
207-08-9	Benzo (k) fluoranthene	< 0.049		μg/l	0.049	0.018	1	"	"	"	"	"	
218-01-9	Chrysene	< 0.049		μg/l	0.049	0.005	1	"	"	"	"	"	
53-70-3	Dibenzo (a,h) anthracene	< 0.049		μg/l	0.049	0.018	1	"	"	"	"	"	
206-44-0	Fluoranthene	< 0.049		μg/l	0.049	0.004	1	"	"	"	"	"	
86-73-7	Fluorene	< 0.049		μg/l	0.049	0.012	1		"	"	"	"	
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.049		μg/l	0.049	0.021	1	"	"	"	"	"	
91-20-3	Naphthalene	< 0.049		μg/l	0.049	0.021	1	"	"	"	"	"	
85-01-8	Phenanthrene	< 0.049		μg/l	0.049	0.008	1	"	u u	"	"		
129-00-0	Pyrene	< 0.049		μg/l	0.049	0.006	1	II .	"	"	"	"	
Surrogate r	recoveries:												
	Benzo (e) pyrene-d12	69			30-13	80 %		"	"	"	"	"	
	als by EPA 200/6000 Series I by method General Prep-l												
	Preservation	Field Preserved;		N/A			1	EPA 200/6000 methods	28-Jun-17		AAW	1710965	
		pH<2 confirmed											
Total Meta	als by EPA 200 Series Metho	ods											
7440-43-9	Cadmium	0.00019	R01, J, D	mg/l	0.00125	0.00019	5	EPA 200.8	25-Jul-17	25-Jul-17	TBC	1712715	Х
7440-50-8	Copper	0.194	R01, D	mg/l	0.00250	0.00044	10	· ·	"	26-Jul-17	"	"	Х
7440-02-0	Nickel	0.0166	R01, D	mg/l	0.00125	0.00025	5	"	n	25-Jul-17	"	"	Х
7439-92-1	Lead	0.00184	R01, D	mg/l	0.00125	0.00012	5	"	"	"	"	"	Х
7440-66-6	Zinc	0.0209	R01, J,LIV	mg/l	0.0250	0.0116	1	"	25-Jul-17	26-Jul-17	"	1712781	Х

Sample Id Chelsea G SC36391				Client Programme Gulf Cl			<u>Matrix</u> Surface W		ection Date -Jun-17 10			eceived Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
General C	Chemistry Parameters												
7782-50-5	Total Residual Chlorine	0.028	CIHT	mg/l	0.020	0.006	1	SM4500-CI-G (11)	30-Jun-17 09:38	05-Jul-17 11:27	RLT	1711119	Х
	рН	7.92	рН	pH Units			1	ASTM D 1293-99B	28-Jun-17 10:00	29-Jun-17 14:20	TN	1710957	X
	Salinity	24.6		ppt (1000)	1.00	0.144	1	SM 2520 (01)	06-Jul-17	06-Jul-17	BD	1711426	
	Total Solids	29,000	LIV	mg/l	100	30.6	1	SM2540 B (11)	29-Jun-17	05-Jul-17	CMB	1711007	
	Total Suspended Solids	9.0		mg/l	0.8	0.4	1	SM2540D (11)	29-Jun-17	30-Jun-17	CMB	1711008	X
	Total Organic Carbon	3.28		mg/l	1.00	0.246	1	SM5310B (00, 11)	07-Jul-17	07-Jul-17	RLT	1711573	X
	acted Analyses by method NA												
Analysis p	erformed by GZA Geoenviro	nmental, Inc	Manchester	, CT* -									
	Aquatic Toxicity	See Report		N/A			1	EPA-821-R-02-0 12				'[none]'	
Prepared	by method 392124												
	erformed by Phoenix Enviro		nc. * - MAC										
7664-41-7	Ammonia as Nitrogen	0.10		mg/L	0.05	0.05	1	E350.1	"	03-Jul-17 10:38	MACT0	392124A	i

26-Jul-17 13:25 Page 11 of 28

Sample Id	lentification_			Client I	Project #		Matrix	Call	ection Date	/Time	Dο	ceived	
Outfall 00	03				Thelsea		Surface Wa		'-Jun-17 10			Jun-17	
SC36392-	-01			Guir C	neisea		Surface wa	atci 27	-Jun-17 10	.00	20-	Juli-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Volatile O	rganic Compounds												
	rganic Compounds by SW8 by method SW846 5030 W												
71-43-2	Benzene	< 1.00		μg/l	1.00	0.28	1	SW846 8260C	30-Jun-17	30-Jun-17	GMA	1711116	
100-41-4	Ethylbenzene	< 1.00		μg/l	1.00	0.33	1	"	"	"	"	"	
1634-04-4	Methyl tert-butyl ether	< 1.00		μg/l	1.00	0.24	1	"	"	"	"	"	
91-20-3	Naphthalene	< 1.00		μg/l	1.00	0.35	1	"	"	"	"	"	
108-88-3	Toluene	< 1.00		μg/l	1.00	0.30	1	"	"	"	"	"	
75-01-4	Vinyl chloride	< 1.00		μg/l	1.00	0.47	1	"	"	"	•	"	
179601-23-1	m,p-Xylene	< 2.00		μg/l	2.00	0.38	1		"	u u	"	"	
95-47-6	o-Xylene	< 1.00		μg/l	1.00	0.28	1	"	"	"	"	"	
75-65-0	Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0	5.90	1	"	"	"			
64-17-5	Ethanol	< 200		μg/l	200	30.9	1	п	"	"	"	"	
Surrogate i	recoveries:												
460-00-4	4-Bromofluorobenzene	101			70-13	0 %		"	"	"	"	"	
2037-26-5	Toluene-d8	103			70-13	0 %		"	"	"	"	"	
17060-07-0	1,2-Dichloroethane-d4	102			70-13	0 %		"	"	"	"	"	
1868-53-7	Dibromofluoromethane	105			70-13	0 %		"	"	"	"	"	
Semivolati	ile Organic Compounds by C	GCMS											
	actables/Phenols												
<u>Prepared</u> 108-95-2	by method SW846 3510C Phenol	< 0.645	U	μg/l	5.00	0.645	1	SW846 8270D	30-Jun-17	04lul-17	MSL	1711096	i
		- 0.010			0.00	0.010	•					17 11000	
Surrogate i 367-12-4		7	CDUD		15 11	0.0/		"			,		
4165-62-2	2-Fluorophenol Phenol-d5	7 12	SDUP SDUP		15-11			,,			,		
			3D0P		15-11	0 %							
	sis of Acid Extractables/Phe by method SW846 3510C	<u>enois</u>											
59-50-7	4-Chloro-3-methylphenol	< 0.501	U	μg/l	5.00	0.501	1	SW846 8270D	30-Jun-17	12-Jul-17	MSL	1711096	
95-57-8	2-Chlorophenol	< 0.748	U	μg/l	5.00	0.748	1	"	"	"	"	"	
120-83-2	2,4-Dichlorophenol	< 0.530	U	μg/l	5.00	0.530	1	"	"	"		"	
105-67-9	2,4-Dimethylphenol	< 0.653	U	μg/l	5.00	0.653	1	"	"	"		"	
534-52-1	4,6-Dinitro-2-methylphenol	< 0.319	U	μg/l	5.00	0.319	1	"	"	"		"	
51-28-5	2,4-Dinitrophenol	< 0.561	U	μg/l	5.00	0.561	1	"	"	"	"	"	
95-48-7	2-Methylphenol	< 0.665	U	μg/l	5.00	0.665	1	"	"	"	"	"	
108-39-4, 106-44-5	3 & 4-Methylphenol	< 0.615	U	μg/l	10.0	0.615	1	"	II	п	"	"	
88-75-5	2-Nitrophenol	< 0.465	U	μg/l	5.00	0.465	1	"	"	"	"	"	
100-02-7	4-Nitrophenol	< 0.838	U	μg/l	5.00	0.838	1	п	"	"	"	"	
87-86-5	Pentachlorophenol	< 0.373	U	μg/l	5.00	0.373	1	"	"	"	"	"	
108-95-2	Phenol	< 0.645	U	μg/l	5.00	0.645	1	"	"	"	"	"	
95-95-4	2,4,5-Trichlorophenol	< 0.520	U	μg/l	5.00	0.520	1	"	"	"	"	"	
88-06-2	2,4,6-Trichlorophenol	< 0.518	U	μg/l	5.00	0.518	1	п	"	"	"	"	
Surrogate i	recoveries:												
367-12-4	2-Fluorophenol	7	SDUP		15-11	0 %		"	"	"	"	"	
4165-62-2	Phenol-d5	11	SDUP		15-11	0 %		п	"	"	"	"	
SVOCs by	y SIM by method SW846 3510C												

Sample Id Outfall 0 SC36392				Client Programmer Client Clien			<u>Matrix</u> Surface W		ection Date 7-Jun-17 10	,		<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
Semivolat	ile Organic Compounds by	GCMS											
SVOCs b	-												
	by method SW846 3510C	-											
83-32-9	Acenaphthene	< 0.050		μg/l	0.050	0.007	1	SW846 8270D SIM	30-Jun-17	10-Jul-17	MSL	1711096	
208-96-8	Acenaphthylene	< 0.050		μg/l	0.050	0.013	1	"	"	"	"	"	
120-12-7	Anthracene	< 0.050		μg/l	0.050	0.008	1		"	"	"	"	
56-55-3	Benzo (a) anthracene	< 0.050		μg/l	0.050	0.017	1		"	"	"	"	
50-32-8	Benzo (a) pyrene	< 0.050		μg/l	0.050	0.020	1		"	"	"	"	
205-99-2	Benzo (b) fluoranthene	< 0.050		μg/l	0.050	0.020	1		"	"	"	"	
191-24-2	Benzo (g,h,i) perylene	< 0.050		μg/l	0.050	0.019	1	"	"	"	"	"	
207-08-9	Benzo (k) fluoranthene	< 0.050		μg/l	0.050	0.019	1	"	"	"			
218-01-9	Chrysene	< 0.050		μg/l	0.050	0.005	1	"	"	"	"	"	
53-70-3	Dibenzo (a,h) anthracene	< 0.050		μg/l	0.050	0.018	1	"	"	"		"	
206-44-0	Fluoranthene	< 0.050		μg/l	0.050	0.004	1	"	"	"			
86-73-7	Fluorene	< 0.050		μg/l	0.050	0.012	1	"	"	"	"	"	
193-39-5	Indeno (1,2,3-cd) pyrene	< 0.050		μg/l	0.050	0.022	1	"	"	"	"	"	
91-20-3	Naphthalene	< 0.050		μg/l	0.050	0.022	1	"	"	"	"	"	
85-01-8	Phenanthrene	< 0.050		μg/l	0.050	0.008	1	"	"	"		"	
129-00-0	Pyrene	< 0.050		μg/l	0.050	0.007	1	"	"	"	"	"	
Surrogate	recoveries:												
_	Benzo (e) pyrene-d12	60			30-13	80 %			"	"			
	als by EPA 200/6000 Series I by method General Prep-												
	Preservation	Field Preserved; pH<2		N/A			1	EPA 200/6000 methods	28-Jun-17		AAW	1710965	
Cananal C	Chemistry Parameters	confirmed											
7782-50-5	Total Residual Chlorine	0.066	CIHT	mg/l	0.020	0.006	1	SM4500-CI-G	30-Jun-17	05 Jul 17	RLT	1711119	v
7702 00 0				-	0.020	0.000		(11) ASTM D	09:38	11:35			
	pH	8.01	рН	pH Units			1	1293-99B	28-Jun-17 10:00	14:20	TN	1710957	^
	Salinity	< 1.00		ppt (1000)	1.00	0.144	1	SM 2520 (01)	06-Jul-17	06-Jul-17	BD	1711426	
	Total Solids	488		mg/l	5.00	1.53	1	SM2540 B (11)	29-Jun-17	05-Jul-17	CMB	1711007	
	Total Suspended Solids	10.3		mg/l	0.8	0.4	1	SM2540D (11)	29-Jun-17	30-Jun-17	CMB	1711008	Х
	Total Organic Carbon	7.18		mg/l	1.00	0.246	1	SM5310B (00, 11)	07-Jul-17	07-Jul-17	RLT	1711573	Χ
Microbiol	ogical Analyses												
	Fecal Coliforms	124	O09, D	CFU/100			2	SM 9222D-97	28-Jun-17		NV	1710945	Χ
	acted Analyses			ml					14:51	14:51			
	<u>by method NA</u> erformed by GZA Geoenviron	umantal Inc. 1	Aanak sata::	CT*									
Anaiysis pe	Aquatic Toxicity	See Report	auncnesier,	N/A			1	EPA-821-R-02-0				'[none]'	
	. Iqualio Toxioity	oce Report		13//1			•	12				[·lone]	
	octed Analyses by method 392124												
Analysis pe	erformed by Phoenix Environ	mental Labs, In	nc. * - MAC	T007									
7664-41-7	Ammonia as Nitrogen	0.26		mg/L	0.05	0.05	1	E350.1	"	03-Jul-17 10:39	MACT0	392124A	
Subcontra	acted Analyses												

Sample Id Outfall 00 SC36392-					Project # Chelsea		<u>Matrix</u> Surface Wa		ection Date 7-Jun-17 10			<u>ceived</u> Jun-17	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	MDL	Dilution	Method Ref.	Prepared	Analyzed	Analyst	Batch	Cert.
	cted Analyses by method 394642-												
Analysis pe	erformed by Phoenix Enviro	nmental Labs, Inc.	* - MACTO	007									
7440-66-6	Zinc	0.011		mg/L	0.002	0.002	1	SW6010C	18-Jul-17	21-Jul-17 13:34	MACT0	394642A	
	acted Analyses by method 394271-												
Analysis pe	erformed by Phoenix Enviro	nmental Labs, Inc.	* - MACTO	007									
7440-47-3	Chromium	0.0133		mg/L	0.0050	0.0050	5	SW6020B	"	19-Jul-17 16:04	MACT0	394271A	
7440-43-9	Cadmium	< 0.0002		mg/L	0.0002	0.0002	1	u	II	19-Jul-17 16:41	"	"	
7439-92-1	Lead	0.0067		mg/L	0.0004	0.0004	1	"	"	"	"	"	
7440-02-0	Nickel	0.0045		mg/L	0.0005	0.0005	1	"	"	"	"	"	
7440-50-8	Copper	< 0.025		mg/L	0.025	0.025	5	n	"	21-Jul-17 13:27	ıı	"	
	octed Analyses by method 393336												
Analysis pe	erformed by Phoenix Enviro	nmental Labs, Inc.	* - MACTO	007									
	Oil and Grease by EPA 1664A	< 1.5		mg/L	1.5	1.5	1	E1664A		12-Jul-17 06:33	MACT0	393336A	

26-Jul-17 13:25 Page 14 of 28

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1711116 - SW846 5030 Water MS										
Blank (1711116-BLK1)					Pre	epared & A	nalyzed: 30-	Jun-17		
Benzene	< 1.00		μg/l	1.00						
Benzene	< 1.0		μg/l	1.0						
Ethylbenzene	< 1.00		μg/l	1.00						
Ethylbenzene	< 1.0		μg/l	1.0						
Methyl tert-butyl ether	< 1.00		μg/l	1.00						
Naphthalene	< 1.0		μg/l	1.0						
Naphthalene	< 1.00		μg/l	1.00						
Toluene	< 1.00		μg/l	1.00						
Toluene	< 1.0		μg/l	1.0						
Vinyl chloride	< 1.00		μg/l	1.00						
m,p-Xylene	< 2.0		μg/l	2.0						
m,p-Xylene	< 2.00		μg/l	2.00						
o-Xylene	< 1.0		μg/l	1.0						
o-Xylene	< 1.00		μg/l	1.00						
Tert-Butanol / butyl alcohol	< 10.0		μg/l	10.0						
Ethanol	< 200		μg/l	200						
Surrogate: 4-Bromofluorobenzene	48.9		μg/l		50.0		98	70-130		
Surrogate: 4-Bromofluorobenzene	48.9		μg/l		50.0		98	70-130		
Surrogate: Toluene-d8	52.1		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	52.1		μg/l		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.3		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.3		μg/l		50.0		103	70-130		
Surrogate: Dibromofluoromethane	51.2		μg/l		50.0		102	70-130		
Surrogate: Dibromofluoromethane	51.2		μg/l		50.0		102	70-130		
Blank (1711116-BLK2)					Pre	epared & A	nalyzed: 30-	Jun-17		
Benzene	< 5.00	D	μg/l	5.00						
Benzene	< 5.0	D	μg/l	5.0						
Ethylbenzene	< 5.0	D	μg/l	5.0						
Ethylbenzene	< 5.00	D	μg/l	5.00						
Methyl tert-butyl ether	< 5.00	D	μg/l	5.00						
Naphthalene	< 5.00	D	μg/l	5.00						
Naphthalene	< 5.0	D	μg/l	5.0						
Toluene	< 5.00	D	μg/l	5.00						
Toluene	< 5.0	D	μg/l	5.0						
Vinyl chloride	< 5.00	D	μg/l	5.00						
m,p-Xylene	< 10.0	D	μg/l	10.0						
m,p-Xylene	< 10.0	D	μg/l	10.0						
o-Xylene	< 5.0	D	μg/l	5.0						
o-Xylene	< 5.00	D	μg/l	5.00						
Tert-Butanol / butyl alcohol	< 50.0	D	μg/l	50.0						
Ethanol	< 1000	D	μg/l	1000						
Surrogate: 4-Bromofluorobenzene	50.6				50.0		101	70-130		
			μg/l							
Surrogate: 4-Bromofluorobenzene	50.6		μg/l		50.0		101	70-130		
Surrogate: Toluene-d8	51.1		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	51.1		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.5		μg/l "		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.5		μg/l "		50.0		101	70-130		
Surrogate: Dibromofluoromethane	51.1		μg/l 		50.0		102	70-130		
Surrogate: Dibromofluoromethane	51.1		μg/l		50.0		102	70-130		
LCS (1711116-BS1)					Pre	epared & A	nalyzed: 30-	Jun-17		

Volatile Organic Compounds - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8260C										
Batch 1711116 - SW846 5030 Water MS										
LCS (1711116-BS1)					Pre	epared & Ar	nalyzed: 30-	Jun-17		
Benzene	24.0		μg/l		20.0	•	120	70-130		
Benzene	24.0		μg/l		20.0		120	70-130		
Ethylbenzene	23.3		μg/l		20.0		116	70-130		
Ethylbenzene	23.3		μg/l		20.0		116	70-130		
Methyl tert-butyl ether	23.6		μg/l		20.0		118	70-130		
Naphthalene	19.5		μg/l		20.0		97	70-130		
Naphthalene	19.5		μg/l		20.0		97	70-130		
Toluene	23.3		μg/l		20.0		116	70-130		
Toluene	23.3		μg/l		20.0		116	70-130		
Vinyl chloride	25.7		μg/l		20.0		128	70-130		
m,p-Xylene	23.4		μg/l		20.0		117	70-130		
m,p-Xylene	23.4				20.0		117	70-130		
o-Xylene	23.4		μg/l ug/l		20.0		117	70-130 70-130		
•	23.9		µg/l					70-130 70-130		
o-Xylene Tert-Butanol / butyl alcohol			µg/l		20.0 200		119 96	70-130 70-130		
•	192		μg/l							
Ethanol	342		μg/l		400		86	70-130		
Surrogate: 4-Bromofluorobenzene	49.4		μg/l		50.0		99	70-130		
Surrogate: 4-Bromofluorobenzene	49.4		μg/l		50.0		99	70-130		
Surrogate: Toluene-d8	51.9		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	51.9		μg/l		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.4		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.4		μg/l		50.0		101	70-130		
Surrogate: Dibromofluoromethane	51.7		μg/l		50.0		103	70-130		
Surrogate: Dibromofluoromethane	51.7		μg/l		50.0		103	70-130		
LCS (1711116-BS2)					Pre	epared & Ar	nalyzed: 30-	Jun-17		
Benzene	23.1	D	μg/l		20.0		116	70-130		
Benzene	23.1	D	μg/l		20.0		116	70-130		
Ethylbenzene	22.1	D	μg/l		20.0		110	70-130		
Ethylbenzene	22.1	D	μg/l		20.0		110	70-130		
Methyl tert-butyl ether	25.6	D	μg/l		20.0		128	70-130		
Naphthalene	21.2	D	μg/l		20.0		106	70-130		
Naphthalene	21.2	D	μg/l		20.0		106	70-130		
Toluene	23.1	D	μg/l		20.0		115	70-130		
Toluene	23.1	D	μg/l		20.0		115	70-130		
m,p-Xylene	22.2	D	μg/l		20.0		111	70-130		
Vinyl chloride	21.5	D	μg/l		20.0		108	70-130		
m,p-Xylene	22.2	D	μg/l		20.0		111	70-130		
o-Xylene	22.2	D	μg/l		20.0		111	70-130		
o-Xylene	22.2	D	μg/l		20.0		111	70-130		
Tert-Butanol / butyl alcohol	274	D	μg/l		200		137	70-130		
Ethanol	501	D	μg/l		400		125	70-130		
Surrogate: 4-Bromofluorobenzene	50.2		μg/l		50.0		100	70-130		
Surrogate: 4-Bromofluorobenzene	50.2		μg/l		50.0		100	70-130		
Surrogate: Toluene-d8	51.7		μg/l		50.0		103	70-130		
Surrogate: Toluene-d8	51.7		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.9		μg/l		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	51.9		μg/l		50.0		104	70-130		
Surrogate: Dibromofluoromethane	52.6		μg/l		50.0		105	70-130		
Surrogate: Dibromofluoromethane	52.6		μg/l		50.0		105	70-130		
LCS Dup (1711116-BSD1)					Pre	epared & Ar	nalyzed: 30-	Jun-17		

Volatile Organic Compounds - Quality Control

nalyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limi
W846 8260C										
atch 1711116 - SW846 5030 Water MS										
LCS Dup (1711116-BSD1)					Pre	epared & Ai	nalyzed: 30-	Jun-17		
Benzene	22.6		μg/l		20.0		113	70-130	6	20
Benzene	22.6		μg/l		20.0		113	70-130	6	20
Ethylbenzene	22.1		μg/l		20.0		110	70-130	5	20
Ethylbenzene	22.1		μg/l		20.0		110	70-130	5	20
Methyl tert-butyl ether	23.7		μg/l		20.0		119	70-130	0.4	20
Naphthalene	19.4		μg/l		20.0		97	70-130	0.6	20
Naphthalene	19.4		μg/l		20.0		97	70-130	0.6	20
Toluene	22.0		μg/l		20.0		110	70-130	6	20
Toluene	22.0		μg/l		20.0		110	70-130	6	20
Vinyl chloride	23.8		μg/l		20.0		119	70-130	7	20
m,p-Xylene	22.4		μg/l		20.0		112	70-130	4	20
m,p-Xylene	22.4		μg/l		20.0		112	70-130	4	20
o-Xylene	21.6		μg/l		20.0		108	70-130	10	20
o-Xylene	21.6		μg/l		20.0		108	70-130	10	20
Tert-Butanol / butyl alcohol	236	QR5	μg/l		200		118	70-130	21	20
Ethanol	392		μg/l		400		98	70-130	14	20
Surrogate: 4-Bromofluorobenzene	50.1		μg/l		50.0		100	70-130		
Surrogate: 4-Bromofluorobenzene	50.1		μg/l		50.0		100	70-130		
Surrogate: Toluene-d8	51.8		μg/l		50.0		104	70-130		
Surrogate: Toluene-d8	51.8		μg/l		50.0		104	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	51.3		μg/l		50.0		103	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4	51.3		μg/l		50.0		103	70-130 70-130		
=					50.0		103	70-130 70-130		
Surrogate: Dibromofluoromethane Surrogate: Dibromofluoromethane	51.5 51.5		μg/l		50.0		103	70-130 70-130		
-	51.5		μg/l							
LCS Dup (1711116-BSD2)		Б				epared & Al	nalyzed: 30-		0	00
Benzene	22.6	D	μg/l		20.0		113	70-130	2	20
Benzene	22.6	D	μg/l		20.0		113	70-130	2	20
Ethylbenzene	22.7	D	μg/l		20.0		114	70-130	3	20
Ethylbenzene	22.7	D	μg/l "		20.0		114	70-130	3	20
Methyl tert-butyl ether	26.0	D	μg/l		20.0		130	70-130	1	20
Naphthalene	21.9	D	μg/l		20.0		109	70-130	3	20
Naphthalene	21.9	D	μg/l		20.0		109	70-130	3	20
Toluene	23.0	D	μg/l		20.0		115	70-130	0.3	20
Toluene	23.0	D	μg/l		20.0		115	70-130	0.3	20
Vinyl chloride	23.7	D	μg/l		20.0		119	70-130	10	20
m,p-Xylene	23.2	D	μg/l		20.0		116	70-130	4	20
m,p-Xylene	23.2	D	μg/l		20.0		116	70-130	4	20
o-Xylene	23.1	D	μg/l		20.0		116	70-130	4	20
o-Xylene	23.1	D	μg/l		20.0		116	70-130	4	20
Tert-Butanol / butyl alcohol	241	D	μg/l		200		121	70-130	13	20
Ethanol	323	D	μg/l		400		81	70-130	43	20
Surrogate: 4-Bromofluorobenzene	50.1		μg/l		50.0		100	70-130		
Surrogate: 4-Bromofluorobenzene	50.1		μg/l		50.0		100	70-130		
Surrogate: Toluene-d8	51.1		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	51.1		μg/l		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.4		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.4		μg/l		50.0		101	70-130		
Surrogate: Dibromofluoromethane	52.4		μg/l		50.0		105	70-130		
Surrogate: Dibromofluoromethane	52.4		μg/l		50.0		105	70-130		

Semivolatile Organic Compounds by GCMS - Quality Control

analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
W846 8270D										
Satch 1711096 - SW846 3510C										
Blank (1711096-BLK1)					Pre	epared: 30-	Jun-17 An	alyzed: 04-Ju	<u>ıl-17</u>	
4-Chloro-3-methylphenol	< 0.501	U	μg/l	0.501						
2-Chlorophenol	< 0.748	U	μg/l	0.748						
2,4-Dichlorophenol	< 0.530	U	μg/l	0.530						
2,4-Dimethylphenol	< 0.653	U	μg/l	0.653						
4,6-Dinitro-2-methylphenol	< 0.319	U	μg/l	0.319						
2,4-Dinitrophenol	< 0.561	U	μg/l	0.561						
2-Methylphenol	< 0.665	U	μg/l	0.665						
3 & 4-Methylphenol	< 0.615	U	μg/l	0.615						
2-Nitrophenol	< 0.465	U	μg/l	0.465						
4-Nitrophenol	< 0.838	U	μg/l	0.838						
Pentachlorophenol	< 0.373	U	μg/l	0.373						
Phenol	< 0.645	U	μg/l	0.645						
2,4,5-Trichlorophenol	< 0.520	U	μg/l	0.520						
2,4,6-Trichlorophenol	< 0.518	U	μg/l	0.518						
Surrogate: 2-Fluorophenol	26.1		μg/l		50.0		52	15-110		
Surrogate: Phenol-d5	26.7		μg/l		50.0		53	15-110		
LCS (1711096-BS1)					Pre	epared: 30-	Jun-17 An	alyzed: 04-Ju	<u>ıl-17</u>	
4-Chloro-3-methylphenol	28.2		μg/l	0.501	50.0		56	30-130		
2-Chlorophenol	28.5		μg/l	0.748	50.0		57	30-130		
2,4-Dichlorophenol	30.8		μg/l	0.530	50.0		62	30-130		
2,4-Dimethylphenol	26.8		μg/l	0.653	50.0		54	30-130		
4,6-Dinitro-2-methylphenol	30.7		μg/l	0.319	50.0		61	30-130		
2,4-Dinitrophenol	24.1		μg/l	0.561	50.0		48	30-130		
2-Methylphenol	31.3		μg/l	0.665	50.0		63	30-130		
3 & 4-Methylphenol	31.1		μg/l	0.615	50.0		62	30-130		
2-Nitrophenol	28.9		μg/l	0.465	50.0		58	30-130		
4-Nitrophenol	30.4		μg/l	0.838	50.0		61	30-130		
Pentachlorophenol	26.4		μg/l	0.373	50.0		53	30-130		
Phenol	28.0		μg/l	0.645	50.0		56	30-130		
2,4,5-Trichlorophenol	32.8		μg/l	0.520	50.0		66	30-130		
2,4,6-Trichlorophenol	28.8		μg/l	0.518	50.0		58	30-130		
Surrogate: 2-Fluorophenol	32.0		μg/l		50.0		64	15-110		
Surrogate: Phenol-d5	31.5		μg/l		50.0		63	15-110		
LCS Dup (1711096-BSD1)					Pre	epared: 30-	Jun-17 An	alyzed: 04-Ju	<u>ıl-17</u>	
4-Chloro-3-methylphenol	26.6		μg/l	0.501	50.0		53	30-130	6	20
2-Chlorophenol	28.5		μg/l	0.748	50.0		57	30-130	0.3	20
2,4-Dichlorophenol	29.1		μg/l	0.530	50.0		58	30-130	6	20
2,4-Dimethylphenol	25.2		μg/l	0.653	50.0		50	30-130	6	20
4,6-Dinitro-2-methylphenol	33.8		μg/l	0.319	50.0		68	30-130	10	20
2,4-Dinitrophenol	24.8		μg/l	0.561	50.0		50	30-130	3	2
2-Methylphenol	27.8		μg/l	0.665	50.0		56	30-130	12	20
3 & 4-Methylphenol	28.6		μg/l	0.615	50.0		57	30-130	8	2
2-Nitrophenol	27.7		μg/l	0.465	50.0		55	30-130	4	20
4-Nitrophenol	28.3		μg/l	0.838	50.0		57	30-130	7	20
Pentachlorophenol	24.7		μg/l	0.373	50.0		49	30-130	7	2
Phenol	26.3		μg/l	0.645	50.0		53	30-130	6	2
2,4,5-Trichlorophenol	31.2		μg/l	0.520	50.0		62	30-130	5	20
2,4,6-Trichlorophenol	28.1		μg/l	0.518	50.0		56	30-130	2	2

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D										
Batch 1711096 - SW846 3510C										
LCS Dup (1711096-BSD1)					Pre	epared: 30-	Jun-17 Ana	alyzed: 04-Ju	ul-17	
Surrogate: Phenol-d5	30.2		ug/l		50.0		60	15-110	·	
•	30.2		μg/l		50.0		00	13-110		
SW846 8270D SIM										
Batch 1711096 - SW846 3510C										
Blank (1711096-BLK2)					Pre	epared: 30-	Jun-17 Ana	alyzed: 10-Ju	<u>ıl-17</u>	
Acenaphthene	< 0.050		μg/l	0.050						
Acenaphthylene	< 0.050		μg/l "	0.050						
Anthracene	< 0.050		μg/l "	0.050						
Benzo (a) anthracene	< 0.050		μg/l	0.050						
Benzo (a) pyrene	< 0.050		μg/l	0.050						
Benzo (b) fluoranthene	< 0.050		μg/l	0.050						
Benzo (g,h,i) perylene	< 0.050		μg/l	0.050						
Benzo (k) fluoranthene	< 0.050 < 0.050		μg/l	0.050						
Chrysene Dibenzo (a,h) anthracene	< 0.050 < 0.050		μg/l	0.050 0.050						
Fluoranthene	< 0.050		μg/l	0.050						
Fluorene	< 0.050		μg/l	0.050						
Indeno (1,2,3-cd) pyrene	< 0.050		μg/l μg/l	0.050						
Naphthalene	< 0.050		μg/l	0.050						
Phenanthrene	< 0.050		μg/l	0.050						
Pyrene	< 0.050		μg/l	0.050						
·				0.000	4.00		405	20.400		
Surrogate: Benzo (e) pyrene-d12	1.05		μg/l		1.00		105	30-130		
LCS (1711096-BS2)				0.050		epared: 30-		alyzed: 10-Ju	<u>ul-17</u>	
Acceptable	0.808		μg/l	0.050	1.00		81	40-140		
Acenaphthylene	0.886		μg/l	0.050	1.00		89	40-140		
Anthracene	0.686		μg/l	0.050	1.00		69 85	40-140		
Benzo (a) anthracene	0.847 0.798		μg/l	0.050	1.00 1.00		85 80	40-140 40-140		
Benzo (a) pyrene Benzo (b) fluoranthene	0.798		μg/l	0.050 0.050	1.00		84	40-140		
Benzo (g,h,i) perylene	0.754		μg/l μg/l	0.050	1.00		75	40-140		
Benzo (k) fluoranthene	0.874		μg/l	0.050	1.00		73 87	40-140		
Chrysene	0.826		μg/l	0.050	1.00		83	40-140		
Dibenzo (a,h) anthracene	0.852		μg/l	0.050	1.00		85	40-140		
Fluoranthene	0.765		μg/l	0.050	1.00		76	40-140		
Fluorene	0.864		μg/l	0.050	1.00		86	40-140		
Indeno (1,2,3-cd) pyrene	0.787		μg/l	0.050	1.00		79	40-140		
Naphthalene	0.801		μg/l	0.050	1.00		80	40-140		
Phenanthrene	0.742		μg/l	0.050	1.00		74	40-140		
Pyrene	0.854		μg/l	0.050	1.00		85	40-140		
Surrogate: Benzo (e) pyrene-d12	0.910		μg/l		1.00		91	30-130		
	0.910		μул			anarad: 20		30-730 alyzed: 10-Ju	ıl 17	
LCS Dup (1711096-BSD2) Acenaphthene	0.712		ua/l	0.050	1.00	spareu. 30-	71	40-140	13	20
Acenaphthylene	0.712		μg/l μg/l	0.050	1.00		84	40-140	5	20
Anthracene	0.643 0.651		μg/l	0.050	1.00		65	40-140	5	20
Benzo (a) anthracene	0.828		μg/l	0.050	1.00		83	40-140	2	20
Benzo (a) pyrene	0.793		μg/l	0.050	1.00		79	40-140	0.6	20
Benzo (b) fluoranthene	0.793		μg/l	0.050	1.00		81	40-140	4	20
Benzo (g,h,i) perylene	0.699		μg/l	0.050	1.00		70	40-140	8	20
Benzo (k) fluoranthene	0.866		μg/l	0.050	1.00		87	40-140	0.9	20
Chrysene	0.817		μg/l	0.050	1.00		82	40-140	1	20

Semivolatile Organic Compounds by GCMS - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW846 8270D SIM										
Batch 1711096 - SW846 3510C										
LCS Dup (1711096-BSD2)					Pre	epared: 30-	Jun-17 An	alyzed: 10-Ju	<u>ıl-17</u>	
Dibenzo (a,h) anthracene	0.823		μg/l	0.050	1.00		82	40-140	3	20
Fluoranthene	0.778		μg/l	0.050	1.00		78	40-140	2	20
Fluorene	0.808		μg/l	0.050	1.00		81	40-140	7	20
Indeno (1,2,3-cd) pyrene	0.722		μg/l	0.050	1.00		72	40-140	9	20
Naphthalene	0.776		μg/l	0.050	1.00		78	40-140	3	20
Phenanthrene	0.688		μg/l	0.050	1.00		69	40-140	8	20
Pyrene	0.782		μg/l	0.050	1.00		78	40-140	9	20
Surrogate: Benzo (e) pyrene-d12	0.900		μg/l		1.00		90	30-130		

Total Metals by EPA 200 Series Methods - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
	1100011		01110	1.0.2	Level	resurt	, vi E.C	Eiiiii		
EPA 200.8										
Batch 1712715 - EPA 200 Series										
Blank (1712715-BLK1)					<u>Pre</u>	epared & Ar	nalyzed: 25	<u>-Jul-17</u>		
Lead	< 0.00002	U	mg/l	0.00002						
Cadmium	< 0.00004	U	mg/l	0.00004						
Nickel	< 0.00005	U	mg/l	0.00005						
Copper	0.00019	J	mg/l	0.00004						
LCS (1712715-BS1)					Pre	epared & Ar	nalyzed: 25	-Jul-17		
Lead	0.0447		mg/l	0.00002	0.0500		89	85-115		
Cadmium	0.0470		mg/l	0.00004	0.0500		94	85-115		
Copper	0.0530	D	mg/l	0.00044	0.0500		106	85-115		
Nickel	0.0476		mg/l	0.00005	0.0500		95	85-115		
<u>Duplicate (1712715-DUP1)</u>			Source: S	C36391-01	Pre	epared & Ar	nalyzed: 25	-Jul-17		
Lead	0.00156	R01, D	mg/l	0.00012		0.00184			17	20
Copper	0.296	QR9, R01, D	mg/l	0.00044		0.194			42	20
Nickel	0.0131	QR9, R01, D	mg/l	0.00025		0.0166			24	20
Cadmium	< 0.00019	R01, U, D	mg/l	0.00019		0.00019				20
Matrix Spike (1712715-MS1)			Source: S	C36391-01	Pre	epared & Ar	nalyzed: 25	-Jul-17		
Lead	0.0462	D	mg/l	0.00024	0.0500	0.00184	89	70-130		
Cadmium	0.0463	D	mg/l	0.00037	0.0500	BRL	93	70-130		
Nickel	0.0572	D	mg/l	0.00050	0.0500	0.0166	81	70-130		
Copper	0.346	QM5, D	mg/l	0.00044	0.0500	0.194	304	70-130		
Post Spike (1712715-PS1)			Source: S	C36391-01	Pre	epared & Ar	nalyzed: 25	-Jul-17		
Lead	0.0467	D	mg/l	0.00024	0.0500	0.00184	90	85-115		
Cadmium	0.0478	D	mg/l	0.00037	0.0500	BRL	96	85-115		
Copper	0.361	QM5, D	mg/l	0.00044	0.0500	0.194	335	85-115		
Batch 1712781 - EPA 200 Series										
Blank (1712781-BLK1)					Pre	epared: 25-	Jul-17 Ana	alyzed: 26-Jul	-17	
Zinc	< 0.00231	U	mg/l	0.00231				,		
LCS (1712781-BS1)			3		Pre	enared: 25-	Jul-17 Ans	alyzed: 26-Jul	-17	
Zinc	0.114	D	mg/l	0.0231	0.100	<u> </u>	114	85-115	.,	
	0.114		ū			norod: OF			17	
Duplicate (1712781-DUP1)	0.0046	R01, J		C36391-01	<u> Pre</u>		Jul-17 ANS	alyzed: 26-Jul		20
Zinc	0.0218	RUΙ, J	mg/l	0.0116	_	0.0209			4	20
Matrix Spike (1712781-MS1)		_		C36391-01				alyzed: 26-Jul	<u>-17</u>	
Zinc	0.535	D	mg/l	0.116	0.500	BRL	107	70-130		
Post Spike (1712781-PS1)			Source: S	C36391-01				alyzed: 26-Jul	<u>-17</u>	
Zinc	0.529	D	mg/l	0.116	0.500	BRL	106	85-115		

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
ASTM D 1293-99B										
Batch 1710957 - General Preparation										
Reference (1710957-SRM1)					Pre	pared: 28-	Jun-17 Aı	nalyzed: 29-Ju	<u>un-17</u>	
рН	6.01		pH Units		6.00		100	97.5-102. 5		
Reference (1710957-SRM2)					Pre	pared: 28-	Jun-17 Aı	o nalyzed: 29-Ju	ın-17	
pH	6.00		pH Units		6.00		100	97.5-102.		
CM 2520 (01)								5		
SM 2520 (01)										
Batch 1711426 - General Preparation			0	2004 04	Dee	O A		2 1 47		
<u>Duplicate (1711426-DUP1)</u> Salinity	24.8	-	<u>Source: SC3</u> ppt (1000)	1.00	Pre	<u>pared & Ar</u> 24.6	nalyzed: 06	<u>5-Jul-17</u>	0.7	10
•	24.0		ppt (1000)	1.00	Dro		nalyzed: 06	2 Jul 17	0.7	10
Reference (1711426-SRM1) Salinity	10.2		ppt (1000)	1.00	10.0	pareu & Ai	102	90-110		
•	10.2		ppt (1000)	1.00		nared & Ar	nalyzed: 06			
Reference (1711426-SRM2) Salinity	10.1	ı	ppt (1000)	1.00	10.0	parcu (X Al	101	90-110		
SM2540 B (11)		'	(/	- -						
Batch 1711007 - General Preparation										
Blank (1711007-BLK1)					Pre	nared: 29-	Jun-17 Aı	nalyzed: 05-Ju	ıl-17	
Total Solids	< 5.00		mg/l	5.00	<u>- 10</u>	paroa. 20	0011 17 71	11a1y20a. 00 00	<u></u>	
LCS (1711007-BS1)			9		Pre	pared: 29-	Jun-17 Aı	nalyzed: 05-Ju	ıl-17	
Total Solids	1120		mg/l	10.0	1100	pa. 0a. 20	101	90-110		
Duplicate (1711007-DUP1)		:	Source: SC3	36391-01	Pre	pared: 29-	Jun-17 Ar	nalyzed: 05-Jı	ıl-17	
Total Solids	28100	-	mg/l	100		29000			3	5
SM2540D (11)										
Batch 1711008 - General Preparation										
Blank (1711008-BLK1)					Pre	pared: 29-	Jun-17 Ar	nalyzed: 30-Ju	un-17	
Total Suspended Solids	< 0.5		mg/l	0.5		•		,		
LCS (1711008-BS1)			· ·		Pre	pared: 29-	Jun-17 Aı	nalyzed: 30-Ju	ın-17	
Total Suspended Solids	94.0		mg/l	10.0	100		94	90-110		
SM4500-Cl-G (11)										
Batch 1711119 - General Preparation										
Blank (1711119-BLK1)					Pre	pared: 30-	Jun-17 Ar	nalyzed: 05-Ju	ıl-17	
Total Residual Chlorine	< 0.020		mg/l	0.020				,		
LCS (1711119-BS1)			-		Pre	pared: 30-	Jun-17 Aı	nalyzed: 05-Ju	ıl-17	
Total Residual Chlorine	0.048		mg/l	0.020	0.0500		95	90-110		
Reference (1711119-SRM1)					Pre	pared: 30-	Jun-17 Aı	nalyzed: 05-Ju	ul-17	
Total Residual Chlorine	0.111		mg/l	0.020	0.105		106	85-115		
SM5310B (00, 11)										
Batch 1711573 - General Preparation										
Blank (1711573-BLK1)					Pre	pared: 07-	Jul-17 An	alyzed: 08-Ju	<u>l-17</u>	
Total Organic Carbon	< 1.00		mg/l	1.00						
LCS (1711573-BS1)					Pre	pared: 07-	Jul-17 An	alyzed: 08-Ju	l-17	
Total Organic Carbon	14.1		mg/l	1.00	15.0		94	85-115		
Calibration Blank (1711573-CCB1)					<u>Pre</u>	pared & Ar	nalyzed: 07	7-Jul-17		
Total Organic Carbon	0.0708		mg/l							
Calibration Blank (1711573-CCB2)					Pre	pared & Ar	nalyzed: 07	7-Jul-17		
Total Organic Carbon	0.124		mg/l							
Calibration Blank (1711573-CCB3)					Pre	pared: 07-	Jul-17 An	alyzed: 08-Ju	<u>l-17</u>	
Total Organic Carbon	0.136		mg/l							

General Chemistry Parameters - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPE Limi
SM5310B (00, 11)										
Batch 1711573 - General Preparation										
Calibration Blank (1711573-CCB4)					Pre	epared: 07-	Jul-17 Ana	ılyzed: 08-Ju	ıl-17	
Total Organic Carbon	0.110		mg/l			•		<u>, </u>		
Calibration Blank (1711573-CCB5)					Pre	epared: 07-	Jul-17 Ana	ılyzed: 08-Ju	ı <u>l-17</u>	
Total Organic Carbon	0.104		mg/l		·				_	
Calibration Check (1711573-CCV1)					Pre	epared & A	nalyzed: 07-	-Jul-17		
Total Organic Carbon	14.3		mg/l	1.00	15.0		95	85-115		
Calibration Check (1711573-CCV2)					Pre	epared & A	nalyzed: 07-	-Jul-17		
Total Organic Carbon	14.4		mg/l	1.00	15.0		96	85-115		
Calibration Check (1711573-CCV3)					Pre	epared & A	nalyzed: 07-	-Jul-17		
Total Organic Carbon	14.0		mg/l	1.00	15.0		93	85-115		
Calibration Check (1711573-CCV4)					Pre	epared: 07-	Jul-17 Ana	ılyzed: 08-Ju	<u>ıl-17</u>	
Total Organic Carbon	13.9		mg/l	1.00	15.0		93	85-115		
Calibration Check (1711573-CCV5)					Pre	epared: 07-	Jul-17 Ana	ılyzed: 08-Ju	<u>ıl-17</u>	
Total Organic Carbon	14.2		mg/l	1.00	15.0		95	85-115		
Reference (1711573-SRM1)					Pre	epared: 07-	Jul-17 Ana	ılyzed: 08-Ju	<u>ıl-17</u>	
Total Organic Carbon	8.45		mg/l	1.00	9.42		90	85-115		

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>E350.1</u>										
Batch 392124A - 392124										
BLK (BY50548-BLK)					Pre	epared: 30-	Jun-17 An	alyzed: 03-Ju	<u>ul-17</u>	
Ammonia as Nitrogen	< 0.05		mg/L	0.05				-		
DUP (BY50548-DUP)			Source: SC	36391-01	Pre	epared: 30-	Jun-17 An	alyzed: 03-Ju	<u>ul-17</u>	
Ammonia as Nitrogen	0.11		mg/L	0.05				-	NC	20
LCS (BY50548-LCS)					Pre	epared: 30-	Jun-17 An	alyzed: 03-Ju	<u>ul-17</u>	
Ammonia as Nitrogen	3.980		mg/L	0.05	3.74		106	90-110		20
MS (BY50548-MS)			Source: SC	36391-01	Pre	epared: 30-	Jun-17 An	alyzed: 03-Ju	<u>ul-17</u>	
Ammonia as Nitrogen	2.230		mg/L	0.05	2		107	90-110		20

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
SW6020B										
Batch 394271A - 394271-										
BLK (BY63775-BLK)					Pre	epared: 18-	Jul-17 Ana	alyzed: 19-Ju	<u>l-17</u>	
Copper	< 0.010		mg/L	0.010				-		
Lead	< 0.001		mg/L	0.001				-		
Nickel	< 0.0010		mg/L	0.0010				-		
Chromium	< 0.0050		mg/L	0.0050				-		
Cadmium	< 0.0002		mg/L	0.0002				-		
DUP (BY63775-DUP)			Source: B	<u> 163775</u>	Pre	epared: 18-	Jul-17 Ana	alyzed: 19-Ju	<u>l-17</u>	
Cadmium	< 0.0002		mg/L	0.0002				-	NC	20
Chromium	< 0.0050		mg/L	0.0050				-	NC	20
Copper	< 0.010		mg/L	0.010				-	NC	20
Lead	< 0.001		mg/L	0.001				-	NC	20
Nickel	0.0035		mg/L	0.0010				-	NC	20
LCS (BY63775-LCS)					Pre	epared: 18-	Jul-17 Ana	alyzed: 19-Ju	<u>l-17</u>	
Cadmium	0.0494		mg/L	0.0002	0.05		98.8	75-125		20
Nickel	0.0537		mg/L	0.0010	0.05		107	75-125		20
Lead	0.0506		mg/L	0.001	0.05		101	75-125		20
Chromium	0.0514		mg/L	0.0050	0.05		103	75-125		20
Copper	0.0538		mg/L	0.010	0.05		108	75-125		20
MS (BY63775-MS)			Source: B	<u> 163775</u>	Pre	epared: 18-	Jul-17 Ana	alyzed: 19-Ju	<u>l-17</u>	
Chromium	0.0542		mg/L	0.0050	0.05		98.0	75-125		20
Copper	0.0604		mg/L	0.010	0.05		95.8	75-125		20
Cadmium	0.0477		mg/L	0.0002	0.05		95.4	75-125		20
Lead	0.0468		mg/L	0.001	0.05		93.6	75-125		20
Nickel	0.0494		mg/L	0.0010	0.05		88.8	75-125		20

Subcontracted Analyses - Quality Control

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
<u>E1664A</u>										
Batch 393336A - 393336										
BLK (BY50549-BLK)					Pre	epared & An	alyzed: 12-	-Jul-17		
Oil and Grease by EPA 1664A	< 1.4		mg/L	1.4	40			-		
LCS (BY50549-LCS)					<u>Pre</u>	epared: Ar	nalyzed: 12	-Jul-17		
Oil and Grease by EPA 1664A	40.50		mg/L	1.4	40		101	85-115		20

Notes and Definitions

Data reported from a dilution
 Detected above the Method Detection Limit but below the Reporting Limit; therefore, result is an estimated concentration

(CLP J-Flag).

O09 This sample was analyzed outside the EPA recommended holding time per client request.

QM5 The spike recovery was outside acceptance limits for the MS, MSD and/or PS due to matrix interference. The LCS and/or

LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.

QR5 RPD out of acceptance range.

QR9 RPD out of acceptance range. The batch is accepted based upon LCS and/or LCSD recovery.

R01 The Reporting Limit has been raised to account for matrix interference.

SDUP Duplicate analysis confirmed surrogate failure due to matrix effects.

U Analyte included in the analysis, but not detected at or above the MDL.

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

CIHT The method for residual chlorine indicates that samples should be analyzed immediately. 40 CFR 136 specifies a holding

time of 15 minutes from sampling to analysis. Therefore all aqueous residual chlorine samples not analyzed in the field are

considered out of hold time at the time of sample receipt.

OG The required Matrix Spike and Matrix Spike Duplicate (MS/MSD) for Oil & Grease method 1664B can only be analyzed

when the client has submitted sufficient sample volume. An extra liter per MS/MSD is required to fulfill the method QC criteria. Please refer to Chain of Custody and QC Summary (MS/MSD) of the Laboratory Report to verify ample sample

volume was submitted to fulfill the requirement.

pH The method for pH does not stipulate a specific holding time other than to state that the samples should be analyzed as

soon as possible. For aqueous samples the 40 CFR 136 specifies a holding time of 15 minutes from sampling to analysis. Therefore all aqueous pH samples not analyzed in the field are considered out of hold time at the time of sample receipt.

All soil samples are analyzed as soon as possible after sample receipt.

LIV The initial volume for this sample has been reduced due to sample matrix and/or historical data therefore elevating the

reporting limit.

26-Jul-17 13:25 Page 27 of 28

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

<u>Continuing Calibration Verification:</u> The calibration relationship established during the initial calibration must be verified at periodic intervals. Concentrations, intervals, and criteria are method specific.

A Division of GZA

GEOTECHNICAL

ENVIRONMENTAL

ECOLOGICAL

WATER

CONSTRUCTION MANAGEMENT

77 Batson Drive Manchester, CT 06042 T: 860.643.9560 F: 860.646.7169 www.nebio.com

ACUTE AQUATIC TOXICITY TEST REPORT

Gulf Oil Terminal Chelsea, MA

Test Start Date:6/28/17
Test Period: June 2017
Report Prepared by:
New England Bioassay
A Division of GZA GeoEnvironmental, Inc. 77 Batson Dr.
Manchester, CT 06042
NEB Project Number: 05.0045469.00
Report Date: July 11, 2017
Report Submitted to:
Eurofins Spectrum Analytical, Inc.
11 Almgren Drive
Agawam, MA 01001
Sample ID: SC36391-01 / SC36392-01

This report shall not be reproduced, except in its entirety, without written approval of New England Bioassay (NEB). NEB is the sole authority for authorizing edits or modifications to the data contained in this report. Test results relate only to samples analyzed. Please contact the Lab Manager, Kimberly Wills, at 860-858-3153 or kimberly.wills@gza.com if you have any questions concerning these results.

Whole Effluent Toxicity Testing Report Instruction Form

Client Name/Project: Spectrum / Gulf Oil Terminal	Test Date:	6/28/17
Sample ID: SC36391-01 / SC36392-01		
Your results were as follows:		
Monitoring Only		
☐ Fail – Please proceed according to the instructions in	n your permit.	
□ Invalid – Retesting is still required. Retest report	will be sent at a	later date under separate cover.
□ Original Test Invalid – Valid retest performed. Bo	oth test and retes	t results are attached.
☐ Retesting will be or has been performed according of EPA-New England's species-specific, self-imple		
This is your case of dilution water to Protocols outlined in the attached copy of EPA-policy for alternate dilution water. The alternate dilution water water as follows: "synthetic laborate protocols, by adding specified amounts of salts into receiving water." Writing this letter should help you	-New England's lution water you story water made deionized water i	species-specific, self-implementing select for future tests for this species up according to EPA's toxicity test n order to match the hardness of our
☐ Available information is insufficient to determine who to your permit limits. Please submit a current copy of the status of future tests results and help ensure your of the status of future tests.	f your permit to th	e NEB Lab so that we can determine

Please complete the items on this list before reporting these results according to the instructions in the "Monitoring and Reporting" Section of your permit.

- Please complete, sign and date the upper portion of the "Whole Effluent Toxicity Test Report Certification" page which is the page directly following this page.
- Fill in the Sample Type and Sample Method (upper right) and the Permit Limits (lower left) on the New England Bioassay EPA Toxicity Test Summary Sheet(s) if they are incomplete.
- Fill in any missing information on the NEB Chain-of-Custody documents. This includes ensuring that the following information is recorded: Sampler's name and title, Facility name and address, Sample collection methods, Sample collection start and end dates and times, Types of sample, Chlorination status of samples upon shipment to NEB, Site description and Sample collection procedures.
- Monitoring results should be summarized on your monthly Discharge Monitoring Report Form.
- Signed and dated originals of this report must be submitted to the State (and Federal) Agencies specified in the "Monitoring and Reporting" section of your permit.

Questions? Please contact the Lab Manager, Kim Wills, at (860) 858-3153 or kimberly.wills@gza.com.

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Permittee)

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on	[Date]	[Authorized Signature]
		[Print or Type Name and Title]
		[Print or Type the Permittee's Name]
		[Print or Type the NPDES Permit No.]

Since the WET test and report check is complicated, the New England Bioassay Aquatic Toxicity Laboratory has certified the validity of the WET test data in the section below. Please note that this does not relieve the permittee from its responsibility to sign and certify the report under 40 C.F.R. S 122.41(k).

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION (Bioassay Laboratory)

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on

[Authorized Signature]

Kim Wills, Laboratory Manager [Print or Type Name and Title]

New England Bioassay

[Print or Type Name of Bioassay Laboratory]

24. Telephone Contacts

If you have questions, please contact Joy Hilton, Water Technical Unit, at (617) 918-1877 or David McDonald, Ecosystem Assessment Unit, at (617) 918-8609.

NEW ENGLAND BIOASSAY, A DIVISION OF GZA EPA TEST SUMMARY SHEET

Facility Name: Gulf C	Dil Terminal	Test Start Date:	6/28/17
	er: MA0001091	Outfall Number:	003
Toot Tyma	Taut Cuanian	Cample Type	Sample Method
Test Type	Test Species	Sample Type	
X Acute	_ Fathead Minnow	Prechlorinated	X Grab
_Chronic	_ Ceriodaphnia Dubia	Dechlorinated	_Composite
_ Modified	_ Daphnia Pulex	Unchlorinated	_Flow-thru
(Chronic reporting		Chlorinated	Other
LC50 values)	_ Sheepshead		
_ 24-Hour Screening	Menidia		
_	Sea Urchin	TRC conc. <u>0.125</u> mg	g/L
	Selenastrum		
	Other		
Dilution Water	Other		
	llected at a point immedia	ately upstream of or away fror	n the discharge:
	ame and sampling locatio)
		d a hardness to generally refle	/ ct the characteristic
	er; (Surface water name:_		A.
Synthetic system pro	pored using either Milling	ore Mill-Q or equivalent deion	ized water and
_ Symmetre water prep	pared using either withipo	combined with mineral water;	ized water and
_	nixed with deionized water	er;	
Other		_	
ECG 12 D	(105115		
Effluent Sampling Dat	te(s):6/2//1/		
T1001	T . 1(1.0() 0 . (25 125 25 50 100	
		.25 12.5 25 50 100	
* (Permit Lim	it Concentration);	monitoring only	
Was effluent salinity a	djusted? Yes If yes,	to what value? 25 ppt	
Reference Toxicant tes	st date: 6/1/17	Reference Toxicant Test Acce	eptable: Yes X No
Age and Age Range of	f Test Organisms 3 da	ys (< 24 hours) Source of Org	anisms <u>NEB</u>
	TEST RESULTS	&PERMIT LIMITS	
	Test Accept	ability Criteria	
A. Synthetic Water Co	ontrol		
Mean Control Surviva		Mean Control Reproduction	: N/A
Mean Control Weight:		Mean Control % Fertilizatio	
Wiedli Control Weight,			
B. Receiving Water Co	ontrol		
_		Man Control Donughustian	N/A
Mean Control Surviva		Mean Control Reproduction	
Mean Control Weight:	:N/A	Mean Control % Fertilizatio	n: <u>N/A</u>
	1 37 37 37		
C. Lab Culture Contro	of Yes_ No \underline{X}		
D. Thiosulfate Control	l Yes_ No X		
	Test V	ariability	
Test PMSD (growth)	<u>N/A</u>		
Test PMSD (reproduct	tion.) <u>N/A</u>		

Permit Limits & Test Results

	Limits		Results
LC50	N/A	LC50	>100%
		Upper Value	±∞
		Lower Value	100%
		Data Analysis	
		Method Used	Graphical
A-NOEC	N/A	A-NOEC	100%
C-NOEC	N/A	C-NOEC	N/A
		LOEC _	N/A
IC25	N/A	IC25	
IC50	N/A	IC50	

PMSD Comparison Discussion - N/A

Concentration-Response Evaluation

The concentration-response relationship observed in this data set corresponds to the following item number in Chapter Four of "Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)", EPA 821-B-00-004, July 2000:

Ideal concentration-response relationship
 All or nothing response
 Stimulatory response at low concentrations and detrimental effects at higher concentrations
 Stimulation at low concentrations but no significant effect at higher concentrations
 Interrupted concentration-response: significant effects bracketed by non-significant effects
 Interrupted concentration-response: non-significant effects bracketed by significant effects
 Significant effects only at highest concentration
 Significant effects at all test concentrations but flat concentration-response curve
 Significant effects at all test concentrations with a sloped concentration-response curve
 Inverse concentration-response relationship

The concentration-response relationship was reviewed according to the above guidance document and the following determination was made:

- X 1. Results are reliable and should be reported.
- _ 2. Results are anomalous. An explanation is provided in the body of the report.
- 2. Results are inconclusive and the test should be repeated with a newly collected sample. An explanation is provided in the body of the report.

NEW ENGLAND BIOASSAY, A DIVISION OF GZA EPA TEST SUMMARY SHEET

Facility Name: Gulf C	Oil Terminal	Test Start Date:	6/28/17
	er: MA0001091	Outfall Number:	003
Test Type	Test Species	Sample Type	Sample Method
		Prechlorinated	
X Acute	Fathead Minnow		X Grab
Chronic	_ Ceriodaphnia Dubia	_ Dechlorinated	_ Composite
_ Modified	_ Daphnia Pulex	Unchlorinated	_Flow-thru
(Chronic reporting	_ Mysid Shrimp	Chlorinated	Other
LC50 values)	Sheepshead	-	2
24-Hour Screening			
	Sea Urchin	TRC conc0.125m	_γ /Ι
	Selenastrum	110 cone. <u>0.125</u> m	5/12
	_		
D'1 4' W 4	_Other		
Dilution Water			.1 11 1
		ately upstream of or away from	n the discharge;
(Receiving water n	ame and sampling locatio	n: Chelsea River)
_Alternate Surface W	ater of known quality and	d a hardness to generally refle	ct the characteristics
of the receiving water	er; (Surface water name:_)
Synthetic water prep	pared using either Millipo	re Mill-Q or equivalent deion	ized water and
reagent grade chemi	cals: or deionized water c	ombined with mineral water;	
0 0	nixed with deionized water		
0.1	med with defended water	,	
_ Other		-	
Effluent Commline Det	6/27/17		
Effluent Sampling Dat	le(s):6/2//1/		
F.03	T . 1(1.0() 0 . (25 125 25 50 100	
	· ·	.25 12.5 25 50 100	
* (Permit Lim	it Concentration): mon	itoring only	
Was effluent salinity a	djusted? Yes If yes,	to what value? 25 ppt	
Reference Toxicant te	st date: 6/1/17 R	eference Toxicant Test Accep	table: Yes X No _
Age and Age Range of	f Test Organisms 10 days	(<24 hours) Source of Org	anisms <u>A.I.</u>
	TEST RESULTS	&PERMIT LIMITS	
	Test Accept	ability Criteria	
A. Synthetic Water Co	ontrol		
Mean Control Surviva		Mean Control Reproduction	· NI/A
Mean Control Weight:	:N/A	Mean Control % Fertilizatio	n: <u>N/A</u>
B. Receiving Water Co			
Mean Control Surviva	l:100%	Mean Control Reproduction	: <u>N/A</u>
Mean Control Weight:	N/A	Mean Control % Fertilizatio	n: <u>N/A</u>
C. Lab Culture Contro	l Yes No X		
D. Thiosulfate Control	I Ves No X		
D. Thiosulate Control		ariability	
	1 CSL V	and the same	
Toot DMCD (~~~~41-)	NI/A		
Test PMSD (growth)	$\frac{N/A}{N/A}$		
Test PMSD (reproduct	tion.) <u>N/A</u>		

Permit Limits & Test Results

	Limits	į.	<u>Results</u>
LC50	N/A	LC50	>100%
		Upper Value	$\pm \infty$
		Lower Value	100%
		Data Analysis	
		Method Used	Graphical
A-NOEC	N/A	A-NOEC	100%
C-NOEC	N/A	C-NOEC	N/A
		LOEC	N/A
IC25	N/A	IC25	
IC50	N/A	IC50	

PMSD Comparison Discussion - N/A

Concentration-Response Evaluation

The concentration-response relationship observed in this data set corresponds to the following item number in Chapter Four of "Method Guidance and Recommendations for Whole Effluent Toxicity (WET) Testing (40 CFR Part 136)", EPA 821-B-00-004, July 2000:

- X 1. Ideal concentration-response relationship2. All or nothing response
- 3. Stimulatory response at low concentrations and detrimental effects at higher concentrations
- _ 4. Stimulation at low concentrations but no significant effect at higher concentrations
- _ 5. Interrupted concentration-response: significant effects bracketed by non-significant effects
- 6. Interrupted concentration-response: non-significant effects bracketed by significant effects
- 7. Significant effects only at highest concentration
- 8. Significant effects at all test concentrations but flat concentration-response curve
- _ 9. Significant effects at all test concentrations with a sloped concentration-response curve
- _ 10. Inverse concentration-response relationship

The concentration-response relationship was reviewed according to the above guidance document and the following determination was made:

- X 1. Results are reliable and should be reported.
- _ 2. Results are anomalous. An explanation is provided in the body of the report.
- 3. Results are inconclusive and the test should be repeated with a newly collected sample. An explanation is provided in the body of the report.

MYSIDOPSIS BAHIA AQUATIC TOXICITY TEST REPORT

Test Reference Manual: EPA 821-R-02-012, "Methods for Measuring the Acute Toxicity of

Effluents and Receiving Waters to Freshwater Organisms and

Marine Organisms", Fifth Edition

Test Method: Mysidopsis bahia Acute Toxicity Test – Method 2007.0

Test Type: Acute Static Non-Renewal Saltwater Test

Salinity: 25 ppt \pm 10% for all dilutions by dry ocean salts (Instant Ocean)

Temperature: $25 \pm 1^{\circ}$ C

Light Quality: Ambient Laboratory Illumination

Photoperiod: 16 hours light, 8 hours dark

Test Chamber Size: 250 mL

Test Solution Volume: Minimum 200 mL

Age of Test Organisms: 3 days

Number of Mysids

Per Test Chamber: 10

Number of Replicate Test

Chambers Per Treatment: 4

Total Number of Mysids

Per Test Concentration: 40

Feeding Regime: Light feeding using concentrated *Artemia* nauplii while holding

prior to initiating the test.

Aeration: Aerated at <100 bubbles/minute

Dilution Water: Chelsea River

Alternate Control Water: NEB Artificial Salt Water (salinity 25 ± 1 ppt)

Effluent Concentrations: 0%, 6.25%, 12.5%, 25%, 50% and 100% effluent

Test Duration: 48 hours

Effect measured: Mortality – no movement of body appendages on gentle prodding

Test Acceptability: $\geq 90\%$ survival of test organisms in control solution Yes X No

Sampling Requirements: Samples first used within 36 hours of collection Yes X No

Sample Volume Required: Minimum 2 liters

<u>Test Organism Source</u>: New England Bioassay

<u>Test Acceptability Criteria</u>: Mean Alternate Water Control Survival = <u>100%</u>

Mean Dilution Water Control Survival = 100%

Test Results:		Limits	Results
	48-hour LC50 Upper Value Lower Value Data Analysis Method Use A-NOEC	N/A d	$ \begin{array}{r} $
Reference Toxicant Data:	Date: Toxicant: Dilution Water: Toxicant Source: Organism Source: 48-hour LC50: In Acceptable Range	NI Ne Ne	6/1/17 Dedium Dodecyl Sulfate EB Artificial Salt Water EW England Bioassay EW England Bioassay 17.7 mg/L ES
Dechlorination Procedures	: Chlorine is measured usin	g 4500 (CL-G DPD Colorimetric Method.
\underline{X} Dechlorination was not red	quired.		
Since dechlorination of the e with sodium thiosulfate was dechlorinated sample. Chlorine measurement was mg/ L when measured by am	iffluent was necessary, a thic also included in the test series elevated in the effluent due aperometric titration.	es. Chlo e to inter	sample prior to test initiation. control of diluent water spiked orine was mg/L in a ference. Chlorine was <0.05 and was found to be mg/L.
			*

MENIDIA BERYLLINA AQUATIC TOXICITY TEST REPORT

Test Reference Manual: EPA 821-R-02-012, "Methods for Measuring the Acute Toxicity of

Effluents and Receiving Waters to Freshwater Organisms and

Marine Organisms", Fifth Edition

Menidia beryllina Acute Toxicity Test – Method 2006.0 **Test Method:**

Acute Static Non-Renewal Saltwater Test **Test Type**:

Salinity: 25 ppt \pm 2 ppt by adding dry ocean salts (Instant Ocean)

 25 ± 1 °C Temperature:

Light Quality. Ambient Laboratory Illumination

Photoperiod: 16 hours light, 8 hours dark

Test Chamber Size: 250 mL

Test Solution Volume: Minimum 200 mL/replicate

Age of Test Organisms: 10 days old (24 hour age range)

Number of Fish Per

Test Chamber: 10

Number of Replicate Test **Chambers Per Treatment: 4**

Total Number of Organisms Per Test Concentration: 40

Feeding Regime: Light feeding using concentrated Artemia nauplii while holding

prior to initiating the test.

Aerated at <100 bubbles/minute **Aeration:**

Chelsea River **Dilution Water:**

Alternate Control Water: NEB Artificial Salt Water (salinity 25 ± 1 ppt)

Effluent Concentrations: 0%, 6.25%, 12.5%, 25%, 50% and 100% effluent

48 hours **Test Duration:**

Effect measured: Mortality – no movement on gentle prodding.

Test Acceptability: \geq 90% survival of test organisms in control solution Yes X No

Yes X No Sampling Requirements: Samples first used within 36 hours of collection

Sample Volume Required: Minimum 2 liters

Test Organism Source: Aquatic Biosystems

Test Acceptability Criteria: Mean Alternate Water Control Survival = 97.5%

Mean Dilution Water Control Survival = 100%

Test Results:		Limits	Results	
	48-hour LC50 Upper Value Lower Value Data Analysis Method Use A-NOEC	N/A ed	$>100\%$ $\pm \infty$ 100% Graphical 100%	
Reference Toxicant Data:	Date: Toxicant: Dilution Water: Toxicant Source: Organism Source: 48-hour LC50: In Acceptable Range	NEB A New Er Aquation 7.78	Dodecyl Sulfate rtificial Salt Water ngland Bioassay Biosystems mg/L	
Dechlorination Procedures	: Chlorine is measured usin	ng 4500 CL - G	DPD Colorimetric M	lethod.
\underline{X} Dechlorination was not red	quired.			
Sample was dechlorinated to Since dechlorination of the ewith sodium thiosulfate was dechlorinated sample. Chlorine measurement was mg/L when measured by amp	ffluent was necessary, a thicalso included in the test ser selevated in the effluent duperometric titration.	osulfate contries. Chlorine	ol of diluent water sp was mg/L in ce. Chlorine was<	iked a
				iig/L.
Additional Notes or Other	Conditions Affecting the	<u>l'est</u> :		
				-
				
<i>.</i>				

NEW ENGLAND BIOASSAY ACUTE TOXICITY DATA FORM COVER SHEET FOR LC50 TESTS

CLIENT:	Eurofins Spe	ctrum Analytical		M.bahia TEST ID#	17-936a
ADDRESS:		gren Drive		M.beryllina TEST ID #	17-936b
		, MA 01001		COC#	c37-2569
SAMPLE TYPE:		ninal Outfall 003		PROJECT#	05.0045469.00
DILUTION WATER:	Chels	ea River			
Sample Date(s):	6/2	27/17	Received On:	6/28/1	7
INVE	ERTEBRATES		,	VERTEBRATES	
TEST SE	T UP (TECH INIT)	KO	ryl y	TEST SET UP (TECH INIT)	KW
	TEST SPECIES	Mysidopsis bahia		TEST SPECIES	Menidia beryllina
	NEB LOT#	Mb17(6-25)		NEB LOT#	Ss17AI(6-27)
mnam 4.01 1 mr	AGE	3 days	mpom o	AGE	10 days
	N VOLUME (mls)	200		SOLUTION VOLUME (mls)	700
NO. ORGANISMS PER		10		MS PER TEST CHAMBER	10
NO ORGANISMS PER C		40		S PER CONCENTRATION	40
NO. ORGANISM	S PER CONTROL	40	NO. OR	GANISMS PER CONTROL	40
10	DATE	TIME		DATE	TIME
TEST START:	6/28/17	1610	TEST START:	6/28/17	1604
TEST END:	6/30/17	1555	TEST END:	6/30/17	1605
RTIFICIAL SW:	NEB BATCH#	CRI037-22	25	125	
RESULTS OF My.	sidopsis bahia)	LC50 TEST	RESULTS OF	Menidia beryllina LC5	0 TEST
METHOD	LC50 (%)	95% Confidence Limits	METHOD	LC50 (%)	95% Confidence Limits
INOMIAL/GRAPHICAL	>100%	100%±∞	BINOMIAL/GRAPHICAL	>100%	100%±∞
ROBIT	11		PROBIT		
1.3					
PEARMAN KARBER			SPEARMAN KARBER	10001	F-25 - 1
OAEL	100%		NOAEL	100%	
IOEC: NO OBSERVAE	BLE EFFECT C	ONCENTRATION	1		
comments:		*Added 269.1g of	IO to 9L of effluent to bring	salinity to 25ppt CB 6/2	8/17
			1,		, 1
REVIEWD BY:	1	/ //	7/16	DATE:	7/11/1
	-//	, 6		DATE.	11111
	//				
	//				

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	17-936a	Test Organism:	Му	sidopsis bal	nia
Project #:	05_0045469.00	Organism Age: _		3	days
Facility Name:	Gulf Oil Terminal	Test Duration:	48	(hours)	
Date Sampled:	6/27/17	Beginning Date:	6/28/17	Time:	1610
Date Received:	6/28/17	Dilution Water So	urce:	Chelsea	River
Sample ID:	Outfall 003	Salinity:	27	DI	ot

Effluent Conc. %		umber o Survivin Irganisn	g	_	issolve Oxygen (mg/L)	-	Те	mperati (°C)	ure		pH (su)			Salinity (ppt)	
Initials	0	TBP	КО	KO	TBP	PD	КО	TBP	PD	КО	TBP	PD	КО	TBP	PD
	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
Control A	10	10	10	7.6	5.8	4.7	24.0	25.4	25.2	7.8	7.9	7.7	25	25	25
Control B	10	10	10		5.3	4.0		25.7	25.3		7.9	7.6		25	25
Control C	10	10	10		5.4	3.8		25.6	25.5		7,9	7.6		25	25
Control D	10	10	10		5.2	3.8		25.7	25.3		7.9	7.6		25	25
Diluent A	10	10	10	7.8	5.4	3.8	24.0	25.6	25.4	7.8	7.7	7.4	27	27	27
Diluent B	10	10	10		4.9	3.6		25.6	25.5	0	7.6	7.4		27	27
Diluent C	10	10	10		4.9	3.3		25.7	25.5		7.6	7.4		27	27
Diluent D	10	10	10		4.9	3.7		25.8	25.5		7.6	7.4		27	27
6.25 A	10	10	10	7.9	5.4	4.2	24.3	25.6	25.4	7.7	7.7	7.5	27	27	27
6.25 B	10	10	10		4.9	3.8		25.7	25.5		7.7	7.4		27	27
6.25 C	10	10	10		4.8	3.5		25.6	25.5		7.6	7.4		27	27
6.25 D	10	10	10		4.8	3.4		25.6	25.6		7.6	7.4		27	27
12.5 A	10	10	10	7.8	5.1	3.4	24.3	25.6	25.6	7.7	7.7	7.4	26	27	27
12.5 B	10	10	10		5.0	3.3		25.5	25.5		7.7	7.4		27	27
12.5 C	10	10	10		5.0	3.9		25.5	25.4		7.7	7.5		27	27
12.5 D	10	10	10		4.9	3.4		25.6	25.6		7.6	7.4		26	27
25 A	10	10	10	7.6	5.7	4.6	24.2	25.5	25.3	7.8	7.8	7.6	26	27	27
25 B	10	10	10		5.9	4.6		25.6	25.2		7.8	7.6		26	27
25 C	10	10	10		4.9	3.8		25.6	25.3		7.7	7.5		26	27
25 D	10	10	10		5,0	3.8		25.7	25.5		7.7	7.5		26	27

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	17-936a	Test Organism:	My	sidopsis bah	nia
Project #:	05.0045469.00	Organism Age:		3	days
Facility Name:	Gulf Oil Terminal	Test Duration:	48	_(hours)	
Date Sampled:	6/27/17	Beginning Date:	6/28/17	_Time: _	1610
Date Received:	6/28/17	Dilution Water Sou	ırce:	Chelsea F	River
Sample ID:	Outfall 003	Salinity:	27	pr	ot

Effluent Conc. %		umber o Survivin rganism	g		issolve Oxygen (mg/L)		Те	mperati (°C)	ure		pH (su)			Salinity (ppt)	
Initials	0	TBP	ко	KO	TBP	PD	ко	TBP	PD	КО	TBP	PD	KO	TBP	PD
	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
50 A	10	10	10	7.7	5.8	4.7	24.2	25.6	25.3	7.8	7.9	7.7	26	26	26
50 B	10	10	10		4.7	3.8		25.6	25.3		7.8	7.7		26	26
50 C	10	10	10		5.2	3.9		25.5	25.3		7.9	7.7		26	26
50 D	10	10	10		5.2	3.9		25.7	25.5		7.9	7.7		26	26
100 A	10	10	10	7_4	5.7	4.6	24.2	25.6	25.4	7.9	8.0	7.9	25	25	26
100 B	10	10	10		4.1	3.4		25.7	25.5		7.9	7.8		25	25
100 C	10	10	10		5.1	3.8		25.6	25.4		8.0	7.9		25	25
100 D	10	10	10		5.3	4.2		25.7	25.5		8.0	7.9		25	26

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

50

100

10/10

10/10

10/10

10/10

10/10

10/10

Report Date:

11 Jul-17 10:38 (p 1 of 2) 17-936a | 15-1897-8539

Test Code: Mysidopsis 96-h Acute Survival Test New England Bioassay 07-1362-1656 Analysis ID: Endpoint: 48h Survival Rate **CETIS Version:** CETISv1.9.2 Analyzed: 11 Jul-17 10:38 Analysis: Linear Interpolation (ICPIN) Official Results: Yes Batch ID: 12-8602-9855 Test Type: Survival (48h) Analyst: EPA/821/R-02-012 (2002) Diluent: Start Date: 28 Jun-17 16:10 Protocol: Receiving Water Ending Date: 30 Jun-17 15:55 Species: Mysidopsis bahia Brine: **Duration:** 48h Source: In-House Culture Age: 3d 1267C5E5 03-0879-0757 Client: Spectrum Analytical Sample ID: Code: Sample Date: 27 Jun-17 10:00 Material: Not Applicable Project: Gulf Oil Terminal (MA0001091) Receipt Date: 28 Jun-17 Source: Station: Sample Age: 30h **Linear Interpolation Options** X Transform Y Transform Seed Resamples Exp 95% CL Method Two-Point Interpolation Log(X) Linear 2115718 200 Yes **Point Estimates** % 95% LCL 95% UCL TU 95% LCL 95% UCL Level LC50 >100 n/a n/a n/a n/a 48h Survival Rate Summary Calculated Variate(A/B) Conc-% Code Count Mean Min Max Std Err **Std Dev** CV% %Effect A В 40 0 D 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40 6.25 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40 40 0.0000 12.5 4 1.0000 1.0000 1.0000 0.0000 0.00% 0.0% 40 40 4 40 40 25 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 50 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40 40 100 4 1.0000 1.0000 1.0000 0.0000 0.0000 0.00% 0.0% 40 40 48h Survival Rate Detail Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 0 D 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 6.25 1.0000 1.0000 12.5 1.0000 1.0000 1.0000 1.0000 25 1.0000 1.0000 1.0000 1.0000 50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 100 48h Survival Rate Binomials Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 0 D 10/10 10/10 10/10 10/10 6.25 10/10 10/10 10/10 10/10 10/10 10/10 10/10 12.5 10/10 25 10/10 10/10 10/10 10/10

10/10

10/10

Report Date: **Test Code:**

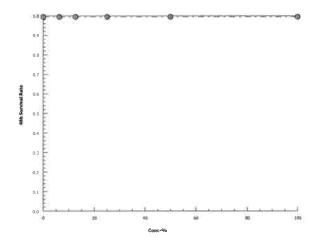
11 Jul-17 10:38 (p 2 of 2) 17-936a | 15-1897-8539

Mysidopsis 96-h Acute Survival Test

New England Bioassay

Analysis ID: Analyzed:

07-1362-1656 11 Jul-17 10:38 Endpoint: 48h Survival Rate


Analysis:

Linear Interpolation (ICPIN)

CETIS Version: Official Results: Yes

CETISv1.9.2

Graphics

Analyst:_____ QA:___

50

100

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

Report Date: Test Code: 11 Jul-17 10:38 (p 1 of 2) 17-936a | 15-1897-8539

New England Bioassay Mysidopsis 96-h Acute Survival Test 08-2671-9310 Endpoint: 48h Survival Rate **CETIS Version:** CETISv1.9.2 Analysis ID: Nonparametric-Control vs Treatments Official Results: Analyzed: 11 Jul-17 10:38 Analysis: Yes Batch ID: 12-8602-9855 Test Type: Survival (48h) Analyst: Start Date: 28 Jun-17 16:10 Protocol: EPA/821/R-02-012 (2002) Diluent: Receiving Water Ending Date: 30 Jun-17 15:55 Species: Mysidopsis bahia Brine: **Duration:** 48h Source: In-House Culture Age: Sample ID: 03-0879-0757 Code: 1267C5E5 Client: Spectrum Analytical Sample Date: 27 Jun-17 10:00 Material: Not Applicable Project: Receipt Date: 28 Jun-17 Source: Gulf Oil Terminal (MA0001091) Station: Sample Age: 30h NOEL LOEL TOEL TU **Data Transform** Alt Hyp Angular (Corrected) C > T 100 > 100 n/a 1 Steel Many-One Rank Sum Test Critical DF P-Type P-Value Decision(α:5%) Control vs Conc-% **Test Stat Ties** 10 0.8333 Non-Significant Effect Dilution Water 6.25 18 1 6 Asymp 10 0.8333 12.5 18 1 6 Asymp Non-Significant Effect 25 18 10 1 6 Asymp 0.8333 Non-Significant Effect 50 18 10 1 6 Asymp 0.8333 Non-Significant Effect 100 18 10 1 6 Asymp 0.8333 Non-Significant Effect **ANOVA Table** DF Decision(a:5%) Source **Sum Squares** Mean Square F Stat P-Value 5 Significant Effect Between 0 0 65540 <1.0E-37 0 0 Error 18 0 23 Total 48h Survival Rate Summary 95% LCL 95% UCL Median Min Max Std Err CV% %Effect Conc-% Code Count Mean 0.00% 0,00% 0 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 D 6.25 4 1.0000 1.0000 1,0000 1.0000 1.0000 1.0000 0.0000 0.00% 0.00% 12.5 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.00% 0.00% 25 4 1.0000 1,0000 0.0000 1.0000 1.0000 1.0000 1.0000 0.00% 0.00% 50 4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.00% 0.00% 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.00% 0.00% 100 4 1.0000 **Angular (Corrected) Transformed Summary** Std Err CV% %Effect Count Mean 95% UCL Median Min Max Conc-% Code 95% LCL 0 D 1,412 1.412 0.00% 0.00% 4 1.412 1.412 1.412 1.412 0 4 1.412 1.412 1.412 1.412 0 0.00% 6.25 1.412 1.412 0.00% 12.5 4 1.412 1.412 1.412 1.412 1.412 1.412 0 0.00% 0.00% 1.412 25 4 1.412 1.412 1.412 1.412 1.412 0 0.00% 0.00% 50 4 1.412 1.412 1.412 1.412 1.412 1.412 0 0.00% 0.00% 4 1.412 0 0.00% 0.00% 100 1.412 1.412 1.412 1.412 1.412 48h Survival Rate Detail Conc-% Code Rep 1 Rep 2 Rep 3 Rep 4 0 D 1.0000 1.0000 1.0000 1.0000 6.25 1.0000 1.0000 1.0000 1,0000 1.0000 12.5 1.0000 1,0000 1.0000 25 1.0000 1.0000 1.0000 1.0000

1,0000

1.0000

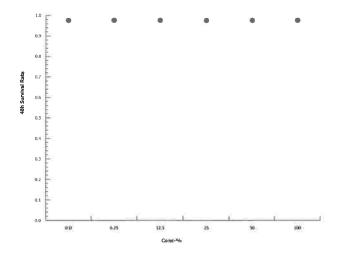
Report Date: Test Code:

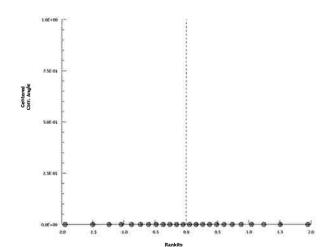
11 Jul-17 10:38 (p 2 of 2) 17-936a | 15-1897-8539

Mysidopsis 96-h Acute Survival Test

New England Bioassay

Analysis ID:	08-2671-9310	Endpoint:	48h Survival Rate	CETIS Version:	CETISv1.9.2
Analyzed:	11 Jul-17 10:38	Analysis:	Nonparametric-Control vs Treatments	Official Results:	Yes


Angular	(Corrected)	Transformed	Detail
---------	-------------	-------------	--------


Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.412	1.412	1,412	1,412
6.25		1.412	1.412	1.412	1.412
12.5		1.412	1.412	1.412	1.412
25		1.412	1.412	1.412	1.412
50		1.412	1.412	1.412	1.412
100		1.412	1.412	1.412	1.412

48h Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	10/10	10/10	10/10	10/10
6.25		10/10	10/10	10/10	10/10
12.5		10/10	10/10	10/10	10/10
25		10/10	10/10	10/10	10/10
50		10/10	10/10	10/10	10/10
100		10/10	10/10	10/10	10/10

Graphics

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	17-936b	Test Organism: _	Menidia beryllina		na
Project #:	05.0045469.00	Organism Age: _	10		days
Facility Name:	Gulf Oil Terminal	Test Duration:	48	(hours)	
Date Sampled:	6/27/17	Beginning Date:	6/28/17	Time: _	1604
Date Received:	6/28/17	Dilution Water So	urce: Chelsea Ri		River
Sample ID:	Outfall 003	Salinity:	27	Dt	ot

Effluent Conc. %		lumber o Survivin Organism	g		issolve Oxygen (mg/L)		Те	mperati (°C)	ure	pH (su)		Salinity (ppt)			
Initials	0	TBP	KO	KO	TBP	PD	КО	TBP	PD	KO	TBP	PD	KO	TBP	PD
	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
Control A	10	9	9	7.6	5.7	5.1	24.0	25.4	25.7	7.8	8.0	7.8	25	25	25
Control B	10	10	10		5.8	4.9		25.3	25.7		8.0	7.8		25	25
Control C	10	10	10		5.9	4.9		25.2	25.7		8.0	7.8		25	25
Control D	10	10	10		5.9	4.9		25.4	25.7		8.0	7.8		25	25
Diluent A	10	10	10	7.8	5.7	4.8	24.0	25.4	25.7	7.8	7.7	7.6	27	26	27
Diluent B	10	10	10		5.6	5.0		25.4	25.5		7.7	7.6		27	27
Diluent C	10	10	10		5.9	5.2		25.3	25.4		7.7	7.7		27	27
Diluent D	10	10	10		5.8	5.0		25.4	25.5		7.7	7.6		27	27
6.25 A	10	10	10	7.9	5.6	5.1	24.3	25.5	25.7	7.7	7.7	7.7	27	26	26
6.25 B	10	10	10		5.5	5.0		25.5	25.7		7.7	7.7		26	26
6.25 C	10	10	10		5.5	4.9		25.5	25.6		7.7	7.7		26	27
6.25 D	10	10	10		5.6	4.6		25.4	25.7		7.7	7.6		27	27
12.5 A	10	10	10	7.8	5.5	5.2	24.3	25.6	25.7	7.7	7.7	7.7	26	26	26
12.5 B	10	10	10		5.5	5.1		25.6	25.6		7.7	7.7		26	26
12.5 C	10	10	10		5.4	5.2		25.5	25.6		7.7	7.7		26	26
12.5 D	10	10	10		5.3	4.8		25.5	25.6		7.7	7.7		26	26
25 A	10	9	9	7.6	5.6	5.5	24.2	25.4	25.4	7.8	7.8	7.7	26	26	26
25 B	10	8	8		5.6	5.2		25.4	25.5		7.8	7.8		26	26
25 C	10	10	10		5.7	5.2		25.4	25.5		7.8	7.8		26	26
25 D	10	9	9		5.2	4.9		25.5	25.5		7.8	7.7		26	26

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

NEW ENGLAND BIOASSAY Toxicity Test Data Sheet

NEB Test #:	17-936b	Test Organism:	Menidia beryllina
Project #:	05.0045469.00	Organism Age:	days
Facility Name:	Gulf Oil Terminal	Test Duration: 4	8 (hours)
Date Sampled:	6/27/17	Beginning Date:6/28	3/17 Time:1604
Date Received:	6/28/17	Dilution Water Source:	Chelsea River
Sample ID:	Outfall 003	Salinity:	27 ppt

Effluent Conc. %		lumber o Survivin Organisn	g		issolve Oxygen (mg/L)		Те	mperati (°C)	ure	pH (su)		Salinity (ppt)			
Initials	0	TBP	КО	KO	TBP	PD	KO	TBP	PD	KO	TBP	PD	KO	TBP	PD
	0	24	48	0	24	48	0	24	48	0	24	48	0	24	48
50 A	10	10	9	7.7	5.7	5.2	24.2	25.3	25.4	7.8	7.9	7.9	26	26	26
50 B	10	10	10		5.6	4.9	1 = 1	25.3	25.4		7.9	7.8		26	26
50 C	10	10	10		5.3	5.0		25.4	25.4		7.8	7.8		26	26
50 D	10	10	10	1 7	5.2	4.9		25.5	25.5		7.8	7.8		26	26
100 A	10	10	10	7.4	5.5	5.1	24.2	25.2	25.4	7.9	8.0	8.0	25	25	25
100 B	10	10	10		5.4	5.2		25.3	25.3		8.0	8.0		25	25
100 C	10	10	10		5.4	5.3		25.3	25.3		8.0	8.0		25	25
100 D	10	10	10		5.5	5.3		25.3	25.3		8.0	8.0		25	25

LC50	Confidence Interval	A-NOEC	Computational Method
>100%	100%±∞	100%	Graphical

Report Date: Test Code: 11 Jul-17 10:39 (p 1 of 2) 17-936b | 14-5186-2294

									ies	t Code:		17-9366 1	4-0100-22	
Inland Silvers	side 96-h Acute	Survival 1	est								N	ew Englan	d Bioass	
Analysis ID:	00-5413-7171	Er	ndpoint:	48h S	Survival Ra	ate			CE	ΓIS Version	: CETISv1	.9.2		
Analyzed:	11 Jul-17 10:3	9 A r	nalysis:	Nonp	arametric-	Control	vs T	reatments	Offi	cial Result	s: Yes			
Batch ID:	16-6034-2378	Te	st Type:	Survi	val (48h)				Ала	ılyst:				
Start Date:	28 Jun-17 16:0	4 Pr	otocol:	EPA/	821/R-02-	012 (20	02)		Dilu	Diluent: Receiving Water				
Ending Date:	30 Jun-17 16:0	5 S p	ecies:	Meni	dia beryllin	a			Brin	ne:				
Duration:	48h	Sc	ource:	In-Ho	ouse Cultur	re			Age	: 10	d			
Sample ID:	10-6666-1888	Co	ode:	3F93	F800				Clie	ent: Sp	ectrum Analy	/tical		
Sample Date:	27 Jun-17 10:0	0 M a	aterial:	Not A	Applicable				Pro	ject:				
Receipt Date:	: 28 Jun-17	Sc	ource:	Gulf (Oil Termin	al (MA0	0010	91)						
Sample Age:	30h	St	ation:											
Data Transfor	rm	Alt Hyp	1						NOEL	LOEL	TOEL	TU	PMSD	
Angular (Corre	ected)	C > T							100	> 100	n/a	1	6.72%	
Steel Many-O	ne Rank Sum 1	est												
Control	vs Conc-%		Test S	Stat	Critical	Ties	DF	P-Type	P-Value	Decision	n(a:5%)			
Dilution Water	6.25		18		10	1	6	Asymp	0.8333	Non-Sign	nificant Effec	1		
	12.5		18		10	1	6	Asymp	0.8333	Non-Sigr	nificant Effect	t		
	25		12		10	1	6	Asymp	0.1424	Non-Sigr	nificant Effect	t		
	50		16		10	1	6	Asymp	0.6105	Non-Sigr	nificant Effect	t		
	100		18		10	1.	6	Asymp	0.8333	Non-Sigr	nificant Effect	t		
ANOVA Table														
Source	Sum Squ	Jares	Mean	Squa	re	DF		F Stat	P-Value	Decision	ι(α:5%)			
Between	0.079866		0.0159	9732		5		4,323	0.0093	Significa	nt Effect			
Error	0.066502	:6	0.0036	946		18								
Total	0.146369	1				23								
Distributional	l Tests													
Attribute	Test					Test S	itat	Critical	P-Value	Decision	n(a:1%)			
Variances	Levene E	quality of \	/ariance T	est		3.608		4.248	0.0195	Equal Va	riances			
Variances	Mod Leve	ene Equalit	y of Variai	nce Te	est	1_723		4.248	0.1804	Equal Va	ıriances			
Distribution	Shapiro-\	Wilk W Nor	mality Tes	st		0.657	1	0.884	2.9E-06	Non-Nor	mal Distributi	ion		
48h Survival I	Rate Summary													
Conc-%	Code	Count	Mean		95% LCL				Min	Max	Std Err	CV%	%Effec	
0	D	4	1.0000		1.0000	1_0000		1.0000	1.0000	1,0000	0.0000	0.00%	0.00%	
6.25		4	1.0000		1,0000	1.0000)	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%	
12.5		4	1.0000		1.0000	1.0000		1.0000	1.0000	1.0000	0.0000	0.00%	0.00%	
25		4	0.9000)	0.7701	1.0000	כ	0.9000	0.8000	1,0000	0.0408	9.07%	10.00%	
50		4	0.9750		0.8954	1.0000		1.0000	0.9000	1.0000	0.0250	5.13%	2.50%	
100		4	1.0000)	1.0000	1_0000)	1.0000	1.0000	1.0000	0.0000	0.00%	0.00%	
Angular (Corr	rected) Transfo	rmed Sum	mary											
Conc-%	Code	Count	Mean		95% LCL	95% L	ICL	Median	Min	Max	Std Err	CV%	%Effec	
0	D	4	1.412		1.412	1.412		1.412	1.412	1.412	0	0.00%	0.00%	
		4	1.412		1.412	1.412		1.412	1.412	1.412	0	0.00%	0.00%	
			4 440		1.412	1.412		1.412	1.412	1.412	0	0.00%	0.00%	
12.5		4	1.412											
6.25 12.5 25		4	1.254		1.056	1_453		1.249	1.107	1.412	0_06231	9.93%		
12.5											0.06231 0.04074		11.17% 2.89% 0.00%	

Report Date: Test Code:

11 Jul-17 10:39 (p 2 of 2) 17-936b | 14-5186-2294

Inland Silverside 96-h Acute Survival Test

New England Bioassay

Analysis ID: 00-5413-7171 Analyzed: 11 Jul-17 10:39 Endpoint: 48h Survival Rate

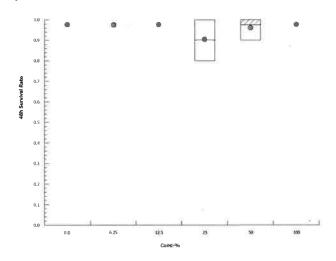
Analysis: Nonparametric-Control vs Treatments

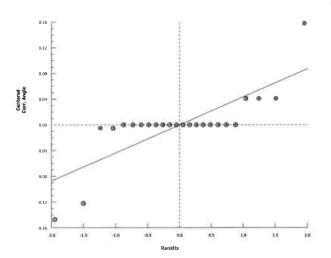
CETIS Version: CETISv1.9.2

Of	ficia	al R	esu	lts	: `	Yes

48h Survival	Rate Detail	
Conc-%	Code	ı
0	D	
6.25		•
12.5		
25		

Conc-%	Code	кер т	Rep 2	кер з	Rep 4
0	D	1.0000	1.0000	1.0000	1.0000
6.25		1.0000	1.0000	1.0000	1,0000
12.5		1.0000	1.0000	1.0000	1.0000
25		0.9000	0.8000	1.0000	0.9000
50		0.9000	1.0000	1.0000	1.0000
100		1.0000	1.0000	1.0000	1.0000
	0 6.25 12.5 25 50	0 D 6.25 12.5 25 50	0 D 1.0000 6.25 1.0000 12.5 1.0000 25 0.9000 50 0.9000	0 D 1.0000 1.0000 6.25 1.0000 1.0000 12.5 1.0000 1.0000 25 0.9000 0.8000 50 0.9000 1.0000	0 D 1.0000 1.0000 1.0000 6.25 1.0000 1.0000 1,0000 12.5 1.0000 1.0000 1.0000 25 0.9000 0.8000 1.0000 50 0.9000 1.0000 1.0000


Angular (Corrected) Transformed Detail


Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	1.412	1.412	1.412	1.412
6.25		1.412	1.412	1.412	1.412
12.5		1.412	1.412	1.412	1.412
25		1.249	1.107	1.412	1.249
50		1.249	1.412	1.412	1.412
100		1.412	1.412	1.412	1.412

48h Survival Rate Binomials

Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4
0	D	10/10	10/10	10/10	10/10
6.25		10/10	10/10	10/10	10/10
12.5		10/10	10/10	10/10	10/10
25		9/10	8/10	10/10	9/10
50		9/10	10/10	10/10	10/10
100		10/10	10/10	10/10	10/10

Graphics

Report Date: Test Code: 11 Jul-17 10:40 (p 1 of 2) 17-936b | 14-5186-2294

							16	St Code.		17-9300	14-5100-225
Inland Silver	side 96-h Acute S	urvival Te	st						Ne	ew Engla	ınd Bioassay
Analysis ID:	17-5418-9503		point:					TIS Version		.9.2	
Analyzed:	11 Jul-17 10:39	Ana	lysis:	Linear Interpola	tion (ICPIN	1)	01	ficial Result	s: Yes		
Batch ID:	16-6034-2378	Test	Type:	Survival (48h)			Ar	alyst:			
Start Date:	28 Jun-17 16:04	Prot	ocol:	EPA/821/R-02-	012 (2002)		Di	luent: Re	ceiving Wate	er	
Ending Date:	: 30 Jun-17 16:05	Spe	cies:	Menidia beryllin	а		Br	ine:			
Duration:	48h	Sou	rce:	In-House Cultur	е		Ag	je: 10	d		
Sample ID:	10-6666-1888	Cod	e:	3F93F800			CI	ient: Sp	ectrum Analy	/tical	
-	: 27 Jun-17 10:00	Mate	erial:	Not Applicable			Pr	oject:			
Receipt Date		Sou		Gulf Oil Termin	al (MA0001	1091)					
Sample Age:	30h	Stat	ion:								
Linear Interp	olation Options										
X Transform	Y Transform			Resamples	Exp 95%		thod				
Log(X)	Linear	1624	1003	200	Yes	Tw	o-Point Inte	rpolation			
Point Estima	tes										
Level %	95% LCL	95% UCL		95% LCL	95% UCL	-					
LC50 >100) n/a	n/a	<1	n/a	n/a						
18h Survival	Rate Summary				Calc	ulated Var	iate(A/B)				
Conc-%	Code	Count	Mean	Min	Max	Std Err	Std De		%Effect	Α	В
0	D	4	1.000		1.0000	0.0000	0.0000	0.00%	0.0%	40	40
6.25		4	1.000		1.0000	0.0000	0.0000	0.00%	0.0%	40	40
12.5		4	1,000		1.0000	0.0000	0.0000	0.00%	0.0%	40	40
25 50		4	0.900		1.0000 1.0000	0.0408 0.0250	0.0817 0.0500	9.07% 5.13%	10.0% 2.5%	36 39	40 40
100		4	1.000		1.0000	0.0230	0.0000	0.00%	0.0%	40	40
48h Survival	Pata Datail		-								
Conc-%	Code	Rep 1	Pop 3	Rep 3	Rep 4						
)	D	1,0000	1.000		1.0000						
5.25	D	1,0000	1.000		1.0000						
12.5		1,0000	1,000		1,0000						
25		0.9000	0.800		0.9000						
50		0.9000	1,000		1,0000						
100		1.0000	1.000		1.0000						
48h Survival	Rate Binomials										
Conc-%	Code	Rep 1	Rep 2	Rep 3	Rep 4						
)	D	10/10	10/10		10/10						
5.25		10/10	10/10	10/10	10/10						
12.5		10/10	10/10	10/10	10/10						
25		9/10	8/10	10/10	9/10						
50		9/10	10/10	10/10	10/10						
50											

Report Date:

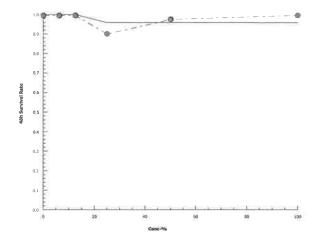
11 Jul-17 10:40 (p 2 of 2)

Test Code:

17-936b | 14-5186-2294

Inland Silverside 96-h Acute Survival Test

New England Bioassay


Analysis ID: Analyzed: 17-5418-9503 11 Jul-17 10:39 Endpoint: 48h Survival Rate

Analysis: Linear Interpolation (ICPIN)

CETIS Version: CETISv1.9.2

Official Results: Yes

Graphics

INITIAL CHEMISTRY INFORMATION

 CLIENT:
 Gulf Oil Terminal - 003

 PROJECT #
 05.0045469.00

RECIEPT DATE	6/	28/17
SAMPLE	Effluent	Receiving Water
COC#	C37-2568	C37-2569
Temperature (°C)	6.4	9.1
Dissolved Oxygen (mg/L)	7.6	9.6
pH (standard units)	6.8	7.7
Conductivity (µmhos/cm)	860	42,800
Salinity (ppt)	<1	27
Hardness (as mg/L CaCO3)	126	4800
Alkalinity (as mg/L CaCO3)	85	95
TRC - DPD (mg/L)	0.125	0.024
INITIALS	СВ	СВ

Additional notes:	

NEB SALTWATER SPEC 3 ACCLIMATION RECORD

C			
Species: Client: Osery Utweet Took ID.	Client:	Quantity:	*Mortality upon arrival
	lest ID.		
Source	14# Gen 45/100	.000	~
- T - T - T	12 9) (17 (0 C)	שת נייני שלו ה	7
Have the marcards		9 days on 6-27-17	* Mortality > 10% - Notify management
Allowable Mortality: > 5% mortality = Notify management	ntify management	フ	

> 5% mortality = Notify management. Allowable Mortality:

Fish = No more than 50% tank volume water change over a 12 (twelve) hour period. Allowable Acclimation:

Mysids = Need to be +/- 2 ppt of test dilution water.

	Comments / Treatment type		Accumented to ASW. 6 L. ASW HZO A 6 L. ASW HZO A 6 L. ASW A Samuty quadwally adjusted to 15900.
	Mortalities	# of dead organisms removed from tank	F (O 0 0
Observations	Do organisms look stressed?	Yes / No	No No No
Obser	Behavioral observations	A = Normal, B = Erratic mov. C = Dead	X X X
	Feedings	AM NOON PM	4+ AT MG 50 500 MC 4= 51P 51P AT 51P 51P AT
	Sal. (ppt) **		55 25 25
	Alkal. (mg/L) ml titrant		20 ml 25 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
try	Temp. (C) *		22.7
Water Chemistry	p.H. (SU)	A.	8. 1
Water	D.O. (mg/L)		35 - 1 35
	Date	2	Sect 30

SUBCONTRACT ORDER

SC36391

Spectrum Analytical

SENDING LABORATORY:

Eurofins Spectrum Analytical, Inc.

11 Almgren Drive Agawam, MA 01001 Phone: (413) 789-9018 Fax: (413) 789-4076

Project Manager: Dulce Litchfield

Project: Gulf Terminal - Chelsea, MA

RECEIVING LABORATORY:

GZA Geoenvironmental, Inc. - Manchester, CT

77 Batson Drive Manchester, CT 06042 Phone: (860) 286-8900 Fax: (860) 242-8389

Project #: Gulf Chelsea

PO Number: SC36391

BILL TO:

Eurofins Spectrum Analytical, Inc.

2425 New Holland Pike Lancaster, PA 17601

Attention: Accounts Payable accountspayable@eurofinsus.com

PO Number: SC36391

Laboratory ID	Sample ID	Sampled	Matrix	Analysis	Due	Comments
	SC36391-01	27-Jun-17 10:00	Surface Water	Aquatic Tox	14-Jul-17 16:00	Client ID is Chelsea Creek/LC50
Containers Supplied: Other (J)				037	-2569	

Please send notice within 24 hours of obtaining valid data, of the results of all drinking water samples that exceed any EPA or Department-established maximum contaminant level, maximum residual disinfectant level or reportable concentration. Notice should be emailed to SpectrumLabResults@EurofinsUS.com.

Please notify <u>SpectrumLabResults@EurofinsUS.com</u> immediately and prior to conducting analysis if certification is not held for the analyses requested.

Please e-mail results in electronic format to SpectrumLabResults@EurofinsUS.com.

Received ON ICE

Released By

Date

Received By

Temp °

Released By Date Received By Date

SUBCONTRACT ORDER

Spectrum Analytical

SC36392

SENDING LABORATORY:

Eurofins Spectrum Analytical, Inc.

11 Almgren Drive Agawam, MA 01001 Phone: (413) 789-9018 Fax: (413) 789-4076

Project Manager: Dulce Litchfield

Project: Gulf Terminal - Chelsea, MA

RECEIVING LABORATORY:

GZA Geoenvironmental, Inc. - Manchester, CT*

77 Batson Drive

Manchester, CT 06042 Phone: (860) 286-8900 Fax: (860) 242-8389 **BILL TO:**

Eurofins Spectrum Analytical, Inc.

2425 New Holland Pike

Lancaster, PA 17601

Attention: Accounts Payable accountspayable@eurofinsus.com

PO Number: SC36392

Project #:

Sampled

Gulf Chelsea SC36392

PO Number:

8036303.01 37

Sample ID

SC36392-01 27-Jun-17 10:00

Matrix
Surface Water

Aquatic Tox

Analysis

14-Jul-17 16:00

Due

Client ID is Outfall

Comments

003/LC50

Containers Supplied:

Laboratory ID

Other (L)

C37-2568

Please send notice within 24 hours of obtaining valid data, of the results of all drinking water samples that exceed any EPA or Department-established maximum contaminant level, maximum residual disinfectant level or reportable concentration. Notice should be emailed to SpectrumLabResults@EurofinsUS.com.

Please notify <u>SpectrumLabResults@EurofinsUS.com</u> immediately and prior to conducting analysis if certification is not held for the analyses requested.

Please e-mail results in electronic format to SpectrumLabResults@EurofinsUS.com.

Received ON ICE

Released By

Date

eceived By

Date

Temp °C

Released By

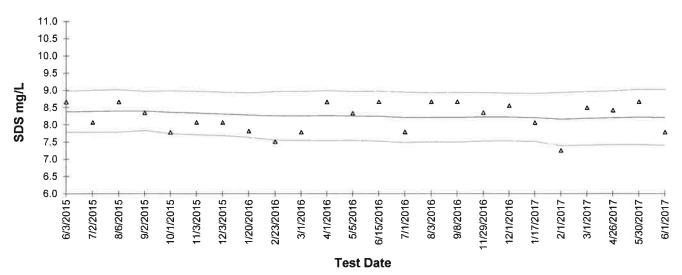
Date

Received By

Date

New England Bioassay Reference Toxicant Data: *Mysidopsis bahia* 48-hour LC50

Reference Toxicant: Sodium Dodecyl Sulfate Test Dates: July 2015 - July 2017



× LC50	Mean LC50	± 2 SD

								CV National
Test ID	Date	LC ₅₀	Mean LC ₅₀	STD	-2STD	+2STD	CV	75th & 90th%
15-900	7/2/2015	18.3	18.3	2.8	12.7	23.9	0.15	0.26
15-1082	8/3/2015	17.7	18.3	2.4	13,5	23.1	0.13	0.26
15-1296	9/1/2015	17.7	18.2	2.4	13.4	23.0	0.13	0.26
15-1458	10/1/2015	17,1	18.2	2.4	13.5	23.0	0.13	0.26
15-1687	11/2/2015	22.5	18.1	2,5	13.1	23.2	0.14	0.26
15-1776	12/1/2015	21.8	18.4	2.3	13.8	23.0	0.13	0.26
16-34	1/4/2016	18.4	18.3	2.3	13.7	22.9	0.12	0.26
16-142	2/1/2016	17.1	18,3	2.3	13.7	22.8	0.12	0.26
16-338	3/8/2016	16.1	18.2	2.3	13.6	22.9	0.13	0.26
16-460	4/1/2016	16.9	17.9	2.3	13.2	22.5	0.13	0.26
16-600	5/2/2016	15.4	17.8	2.0	13.7	21.8	0.11	0.26
16-709	6/1/2016	19.6	17.9	2.0	13.8	22.0	0.11	0.26
16-849	7/1/2016	21.7	18.3	2.2	13.8	22.7	0.12	0.26
16-1058	8/1/2016	16.3	18.2	2.0	14.1	22.2	0:11	0.26
16-1256	9/7/2016	17.6	18.2	2.0	14.1	22.3	0.11	0.26
16-1471	10/5/2016	15.5	17.9	2.1	13.7	22.1	0.12	0.26
16-1590	11/1/2016	19.6	18.0	2.0	14.0	22.1	0.11	0.26
17-9	1/3/2017	20.3	18.2	2.1	14.0	22.4	0.11	0.26
17-154	2/1/2017	17.7	18.3	2.1	14.1	22.4	0.11	0.26
17-273	3/1/2017	20.3	18.4	2.1	14.3	22.5	0.11	0.26
17-479	4/4/2017	17.7	18.4	2.1	14.2	22.5	0.11	0.26
17-697	5/10/2017	18.0	18.4	2.1	14.2	22.5	0.11	0.26
17-776	6/1/2017	17.7	18.4	2.1	14.2	22.5	0.11	0.26
17-977	7/5/2017	19,3	18.5	2.1	14.3	22.6	0.11	0.26

New England Bioassay Reference Toxicant Data: *Menidia beryllina* 48-hour LC50

Reference Toxicant: Sodium Dodecyl Sulfate Test Dates: June 2015 - June 2017

Δ	LC50	—— Mean LC50	+/- 2 STD	
			CV National	CV National

								CV Hational	CV National
Test ID	Date	LC ₅₀	Mean LC ₅₀	STD	-2STD	+2STD	CV	75th%	90th%
15-705	6/3/2015	8.7	8.4	0.3	7.8	9.0	0.04	0,21	0.44
15-901	7/2/2015	8.1	8.4	0.3	7.8	9.0	0.04	0,21	0.44
15-1083	8/6/2015	8.7	8.4	0.3	7.8	9.0	0.04	0,21	0.44
15-1297	9/2/2015	8.4	8.4	0.3	7.8	9.0	0.03	0.21	0.44
15-1539	10/1/2015	7.8	8.4	0.3	7.7	9.0	0.04	0.21	0.44
15-1688	11/3/2015	8.1	8.3	0.3	7.7	9.0	0.04	0.21	0.44
15-1825	12/3/2015	8.1	8.3	0.3	7.7	8.9	0.04	0.21	0.44
16-108	1/20/2016	7.8	8.3	0.3	7.6	8.9	0.04	0.21	0.44
16-260	2/23/2016	7.5	8.3	0.4	7.6	9.0	0.04	0.21	0.44
16-303	3/1/2016	7.8	8,3	0.4	7.5	9.0	0.04	0.21	0.44
16-461	4/1/2016	8.7	8.3	0.4	7.5	9.0	0.04	0.21	0.44
16-602	5/5/2016	8.3	8.3	0.4	7.5	9.0	0.04	0.21	0.44
16-798	6/15/2016	8.7	8.2	0.4	7.5	9.0	0.04	0.21	0.44
16-850	7/1/2016	7.8	8.2	0,4	7.5	8.9	0.04	0.21	0.44
16-1060	8/3/2016	8.7	8.2	0.4	7.5	8.9	0.04	0.21	0.44
16-1282	9/8/2016	8.7	8.2	0.4	7.5	8.9	0.04	0.21	0.44
16-1705	11/29/2016	8.4	8.2	0.4	7.5	8.9	0.04	0.21	0.44
16-1739	12/1/2016	8.6	8.2	0.3	7.5	8.9	0.04	0.21	0.44
17-83	1/17/2017	8.1	8.2	0.3	7.5	8.9	0.04	0.21	0.44
17-155	2/1/2017	7.3	8.2	0.4	7,4	8.9	0.05	0.21	0.44
17-278	3/1/2017	8.5	8.2	0.4	7.4	9.0	0.05	0.21	0.44
17-595	4/26/2017	8.4	8.2	0.4	7.4	9.0	0.05	0.21	0.44
17-758	5/30/2017	8.7	8.2	0.4	7.4	9.0	0.05	0.21	0.44
17-777	6/1/2017	7.8	8.2	0.4	7.4	9.0	0.05	0.21	0.44
	15-705 15-901 15-1083 15-1297 15-1539 15-1688 15-1825 16-108 16-260 16-303 16-461 16-602 16-798 16-850 16-1060 16-1282 16-1705 16-1739 17-83 17-155 17-278 17-595 17-758	15-705 6/3/2015 15-901 7/2/2015 15-1083 8/6/2015 15-1297 9/2/2015 15-1539 10/1/2015 15-1688 11/3/2015 15-1825 12/3/2015 16-108 1/20/2016 16-260 2/23/2016 16-303 3/1/2016 16-461 4/1/2016 16-602 5/5/2016 16-798 6/15/2016 16-798 6/15/2016 16-1060 8/3/2016 16-1282 9/8/2016 16-1282 9/8/2016 16-1705 11/29/2016 16-1705 11/29/2016 16-1739 12/1/2016 17-83 1/17/2017 17-155 2/1/2017 17-278 3/1/2017 17-595 4/26/2017	15-705 6/3/2015 8.7 15-901 7/2/2015 8.1 15-903 8/6/2015 8.7 15-1297 9/2/2015 8.4 15-1539 10/1/2015 7.8 15-1688 11/3/2015 8.1 15-1825 12/3/2015 8.1 16-108 1/20/2016 7.8 16-260 2/23/2016 7.5 16-303 3/1/2016 7.8 16-461 4/1/2016 8.7 16-602 5/5/2016 8.3 16-798 6/15/2016 8.7 16-850 7/1/2016 7.8 16-1060 8/3/2016 8.7 16-1282 9/8/2016 8.7 16-1705 11/29/2016 8.4 16-1739 12/1/2016 8.6 17-83 1/17/2017 8.1 17-155 2/1/2017 7.3 17-278 3/1/2017 8.5 17-595 4/26/2017 8.4 17-758 5	15-705 6/3/2015 8.7 8.4 15-901 7/2/2015 8.1 8.4 15-1083 8/6/2015 8.7 8.4 15-1297 9/2/2015 8.4 8.4 15-1539 10/1/2015 7.8 8.4 15-1688 11/3/2015 8.1 8.3 15-1825 12/3/2015 8.1 8.3 16-108 1/20/2016 7.8 8.3 16-260 2/23/2016 7.5 8.3 16-303 3/1/2016 7.8 8.3 16-461 4/1/2016 8.7 8.3 16-602 5/5/2016 8.3 8.3 16-798 6/15/2016 8.7 8.2 16-1060 8/3/2016 8.7 8.2 16-1282 9/8/2016 8.7 8.2 16-1705 11/29/2016 8.4 8.2 16-1739 12/1/2017 8.1 8.2 17-83 1/17/2017 8.1 8.2 17-278<	15-705 6/3/2015 8.7 8.4 0.3 15-901 7/2/2015 8.1 8.4 0.3 15-1083 8/6/2015 8.7 8.4 0.3 15-1297 9/2/2015 8.4 8.4 0.3 15-1539 10/1/2015 7.8 8.4 0.3 15-1688 11/3/2015 8.1 8.3 0.3 15-1825 12/3/2015 8.1 8.3 0.3 16-108 1/20/2016 7.8 8.3 0.3 16-260 2/23/2016 7.5 8.3 0.4 16-303 3/1/2016 7.8 8.3 0.4 16-602 5/5/2016 8.7 8.3 0.4 16-798 6/15/2016 8.7 8.2 0.4 16-1060 8/3/2016 8.7 8.2 0.4 16-1705 11/29/2016 8.7 8.2 0.4 16-1739 12/1/2017 8.1 8.2 0.3 17-83 1/1	15-705 6/3/2015 8.7 8.4 0.3 7.8 15-901 7/2/2015 8.1 8.4 0.3 7.8 15-1083 8/6/2015 8.7 8.4 0.3 7.8 15-1297 9/2/2015 8.4 8.4 0.3 7.8 15-1539 10/1/2015 7.8 8.4 0.3 7.7 15-1688 11/3/2015 8.1 8.3 0.3 7.7 15-1825 12/3/2016 7.8 8.3 0.3 7.7 16-108 1/20/2016 7.8 8.3 0.3 7.6 16-260 2/23/2016 7.5 8.3 0.4 7.6 16-303 3/1/2016 7.8 8.3 0.4 7.5 16-461 4/1/2016 8.7 8.3 0.4 7.5 16-602 5/5/2016 8.3 8.3 0.4 7.5 16-798 6/15/2016 8.7 8.2 0.4 7.5 16-1282 <t< td=""><td>15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 15-1825 12/3/2015 8.1 8.3 0.3 7.7 9.0 15-1825 12/3/2016 7.8 8.3 0.3 7.7 8.9 16-108 1/20/2016 7.8 8.3 0.4 7.6 9.0 16-303 3/1/2016 7.8 8.3 0.4 7.5 9.0 16-602 5/5/2016 8.7 8.3 0.4 7.5 9.0 16-798 6/15/2016 8.7 8.2 0.4<!--</td--><td>15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 0.04 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 0.04 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 0.04 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 0.03 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 0.04 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 15-1825 12/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 16-108 1/20/2016 7.8 8.3 0.3 7.6 8.9 0.04 16-260 2/23/2016 7.5 8.3 0.4 7.6 9.0 0.04 16-303 3/1/2016 7.8 8.3 0.4 7.5 9.0 0.04 16-461 4/1/2016 8.7</td><td>Test ID Date LC₈₀ Mean LC₈₀ STD -2STD +2STD CV 75th% 15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 0.04 0.21 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 0.04 0.21 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 0.04 0.21 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 0.03 0.21 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 0.04 0.21 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 0.21 15-1825 12/3/2016 7.8 8.3 0.3 7.7 8.9 0.04 0.21 16-108 1/20/2016 7.8 8.3 0.4 7.6 9.0 0.04 0.21 16-260 2/23/2016</td></td></t<>	15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 15-1825 12/3/2015 8.1 8.3 0.3 7.7 9.0 15-1825 12/3/2016 7.8 8.3 0.3 7.7 8.9 16-108 1/20/2016 7.8 8.3 0.4 7.6 9.0 16-303 3/1/2016 7.8 8.3 0.4 7.5 9.0 16-602 5/5/2016 8.7 8.3 0.4 7.5 9.0 16-798 6/15/2016 8.7 8.2 0.4 </td <td>15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 0.04 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 0.04 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 0.04 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 0.03 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 0.04 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 15-1825 12/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 16-108 1/20/2016 7.8 8.3 0.3 7.6 8.9 0.04 16-260 2/23/2016 7.5 8.3 0.4 7.6 9.0 0.04 16-303 3/1/2016 7.8 8.3 0.4 7.5 9.0 0.04 16-461 4/1/2016 8.7</td> <td>Test ID Date LC₈₀ Mean LC₈₀ STD -2STD +2STD CV 75th% 15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 0.04 0.21 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 0.04 0.21 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 0.04 0.21 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 0.03 0.21 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 0.04 0.21 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 0.21 15-1825 12/3/2016 7.8 8.3 0.3 7.7 8.9 0.04 0.21 16-108 1/20/2016 7.8 8.3 0.4 7.6 9.0 0.04 0.21 16-260 2/23/2016</td>	15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 0.04 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 0.04 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 0.04 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 0.03 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 0.04 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 15-1825 12/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 16-108 1/20/2016 7.8 8.3 0.3 7.6 8.9 0.04 16-260 2/23/2016 7.5 8.3 0.4 7.6 9.0 0.04 16-303 3/1/2016 7.8 8.3 0.4 7.5 9.0 0.04 16-461 4/1/2016 8.7	Test ID Date LC ₈₀ Mean LC ₈₀ STD -2STD +2STD CV 75th% 15-705 6/3/2015 8.7 8.4 0.3 7.8 9.0 0.04 0.21 15-901 7/2/2015 8.1 8.4 0.3 7.8 9.0 0.04 0.21 15-1083 8/6/2015 8.7 8.4 0.3 7.8 9.0 0.04 0.21 15-1297 9/2/2015 8.4 8.4 0.3 7.8 9.0 0.03 0.21 15-1539 10/1/2015 7.8 8.4 0.3 7.7 9.0 0.04 0.21 15-1688 11/3/2015 8.1 8.3 0.3 7.7 9.0 0.04 0.21 15-1825 12/3/2016 7.8 8.3 0.3 7.7 8.9 0.04 0.21 16-108 1/20/2016 7.8 8.3 0.4 7.6 9.0 0.04 0.21 16-260 2/23/2016

Page 1 of 1 Invoice To: Christopher Gill Gulf Oil LP 80 William St, Suite 400 Wellesley, MA 02481-3705 Vellesley, MA 02481-3705 Vellesley, MA 02481-3705 Sampler(s): P.O.No. Onote/RQN: P.O.No. List Preservative Code I	Date: Ime: # # # #	1000 G SW 1 ×	Soll Stronge N2= N3= C=Compsite C=Compsite Time: Type Matrix = of VOA Vials # of Clear Glass # of Plastic × Ammonia
tered 1=Na ₅ S2O ₅ 2 HCl 3-H ₂ SO ₄ 4-HNO ₅ 5-NaOH 6 Ascorbic Acid	Ming Water GW=Groundwater SW=Surface Water WW=Waste Water SO Soil SI_Sludge A=Indoor/Ambient Air SG=Soil Gas SI_Sludge A=Indoor/Ambient Air SG=Soil Gas X2=	so Soil SI_Sludge A=Indoor/Ambient Air SG_Soil Gas SO Soil SI_Sludge A=Indoor/Ambient Air SG_Soil Gas Somple ID: C=Compsite Type Matrix = of VOA Vials # of Clear Glass # of Plastic X Ammonia TRC, salinity, pH. TS, TSS BTEX & naphthalene PAHs TOC Total Recov. (Cd, Cu, Pb, Ni, Zn)* LC50 Check if chlorinated	inking Water GW=Groundwater SW=Surface Water WW=Waste Water A=Indoor/Ambient Air SG=Soil Gas
8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ H= none 3 11 2 11 10 4 Analysis Analysis	Type Matrix Type Matrix ToC Total Ph, N LC50	G. Grab Sample ID: Time: Type SW Matrix = of VO # of Am # of Cle TRC, s TSS BTEX PAHs TOC Total Pb, N LC50	NI NI SI SINGER NI SI SI SINGER NI SI
8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 8=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 9=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 10=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 11=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 12=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 13=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 14=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II= none 15=NaHSO ₄ 9=Defonized Water 10=H ₃ PO ₄ II=		Sample ID: Date: 1 1 X	C=Compsite Type Matrix of VO.
NaHSO ₄ 9=Deinnized Watter 10=H ₃ PO ₄ II= none Soil SI_Sludge A=Indoor/Ambient Air SG_Soil Gas Soil SI_Sludge A=Indoor/Ambient Air SG_Soil Gas X2=	Chelsea Creek		Chelsea Creek
Re NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 8 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 9 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 10 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 11 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 12 e NaHSO, 9=Deinnized Water 10=H ₃ PO, 11= none 13	Chelsea Creek 6-71 1000 G SW 3 X X X X X X X X X X X X X X X X X X	77 1000 6 SW 3 X	Chelsea Creek 6-71 1000 G SW 3
ge Waler (C. Grab Surface Water WW=Waste Water W	Chelsea Creek 6-71 1000 G SW 3 X X Chelsea Creek 6-71 1000 G SW 3 X X X X X X X X X X X X X X X X X X	6-27 1000 6 sw 3	Chelsea Creek 6-71 1000 G SW 3 Chelsea Creek 6-71 1000 G SW 3 Chelsea Creek 6-71 1000 G SW 1
By Walter G.WGroundwater 10-H.pO ₄ H= none St. Sludge A=Indoor/Ambient Air SG-Soil Gas So. Soil St. Sludge A=Indoor/Ambient Air SG-Soil Gas Celsea Creek Chelsea Cre	Chelsea Creek 671 1000 G SW 1 X X G G Chelsea Creek 671 1000 G SW 3 X X G G G G G G G G G G G G G G G G G	6-27 1000 6 sw 3	Chelsea Creek
By Walto GW-Groundwater SW-Surface Water WW-Waste Water GG Soil St. Sludge A-Indoor/Ambient Air SG Soil Gas SO Soil St. Sludge A-Indoor/Ambient Air SG Soil Gas X2-	Chelsea Creek	6-21 1000 6 SW 3	Chelsea Creek
Soul SI Sludge A Indoor/Ambuent Au SG Sulface Water Wa	Chelsea Creek Ch		Chelsea Creek
By Walter GW-Groundwater SW-Surface Water WW-Waste Water Stample ID: Sample ID: Chelsea Creek	Chelsea Creek Ch		Chelsea Creek
## ## ## ## ## ## ## ## ## ## ## ## ##	Chelsea Creek	helsea Creek L71 1000 G SW 3 X X A helsea Creek L71 1000 G SW 1 X X IIII helsea Creek L71 1000 G SW 2 1 X X IIII helsea Creek L71 1000 G SW 1 1 X X IIII helsea Creek L71 1000 G SW 1 1 X X IIII helsea Creek L71 1000 G SW 1 1 X X IIII helsea Creek L71 1000 G SW 1 1 X X IIII helsea Creek L71 1000 G SW 1 1 X X IIII helsea Creek L71 1000 G SW 1 1 X X IIII hel	Chelsea Creek

12
36
392
/

1	1	Mark	(AXC	Reliphylshedry)		(12						3639201	Lab ID;	G= Grab	NI=	SO=Soil	DW-Dinking Water		F=Field Filtered 1=Na 7=CH3OH 8=NaHSO ₄	Project Mgr:	Telephone #	Chelsea, MA 02150	281 Eastern Ave	Gulf Oil LP	Report To: Andrew Adams	SPECTRUM AI Fee HANIBAL I	1,
	1	2	B	City				Outfall 003	Outfall 003	Outfall 003	Outfall 003	Outfall 003	Outfall 003	Outfall 003	Sample ID:	5	320	SL=Sludge A=Indoor/Ambient Au	GW=Groundwater SW=		1=Na ₂ S2O ₃ 2=HCl 3 H ₂ SO ₄ SO ₄ 9=Deionized Water 10=H ₁ PO ₄	Andrew Adams	617.884.5980	2150	Ve			SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY	
		MAN	nen	Received by:				6-27	6-27	6-77	6-29	1.2.9	1.2-9	12-9	Dates	C=Compsite	2	SC	SW=Surface Water W		4=HNO ₃								
		B	XX	d by:				(000)	1000	1000	1000	(000)	1000	1000	Time:	Ге		off Gaw	ww=Waste Water		NaOH none	P.O No.		1.2	1=		Invoice To: Christopher Gill		CHAIN OF CUSTODY RECOR
								G	G	G	G	G	G	G	T	ype					6=Ascorbic Acid			Wellesley, MA 02481-3705	80 William St, Suite 400	Gulf Oil LP	Christop	7	0
	1	101	5					WS	WS	WS	WS	WS	WS	WS		atrix			-		c Acid			y, MA C	am St, S	P	her Gill	Page	FC
	1	10	1/8/2	Date:				72			3					VOA								2481-3	uite 400			1 0	SU
		1	7						+	-	+	-	-			Ambe			Containers			Quote/RQN		705					TO
		500	1:00	Time:					4				_			Plasti	-		iners			Ž						2	DYI
No.	Course	Correct	Consultation of the second	Te										×	Amı	monia				3									RECO
5	o Di	On Procher	2	Temp °C									×		TRO		uity, į	pH, TS,		=	1	'		1	1	,	'		ORI
	Condu											×			0&0	G				63	ist Pres								0
mbient	ion upo		E-mail to:	EDD format:							×				TBA			a-lene,	Analysis	2	ervativ		Sampler(s):	Location:	SHE INAHE.	Cita Nam	Project No:		
Ambient leed	Condition upon receipt			mat							×				Viny		ride,	MTBE	sis	11	List Preservative Code below:	î	s):	ı	1		60:		
			adams@							×				_				phenol ^s		=	below:							Sa Mi	St.
Refrigerated	Custody Seals		gulfoil.c						×	-					TOO	al Coli	form		+	10 4			3	281 Eas	1			TATs s n. 24-h mples di	sh TAT
			om, cgill			П		×							1		chlo	rinated		1			2000	tern Av	G	0		notifica sposed a	Speci FAT - 7
☐ Dì VOA Frozen ☐ Soil Jar Frozen	□ Present □ Intact □ Broken	aadams@gulfoil.com, egill@gulfoil.com					Group 2 PAHs - 5 µg/L	Group 1 PAHs - 0.1 µg/L	ethanol - 400 µg/L	naphthalene and vinyl chl - 5 µg/L	BTEX - 2 µg/L; TBA - 10 µg/L;	Required Minimum Levels:	* Report phenol down to MDL	State-specific reporting standards		☐ ASP A* ☐ ASP B*	No QC	MA DEP MCP CAM Report? LI Yes LI No	anumonal charges may applying	QA/QC Reporting Notes:		1	Chelsea	Gui Cheisea Feirillai	Cholcoa Terminal	Gulf Chelsea	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.	Special Handling: Standard TAT - 7 to 10 business days Rush TAT - Date Needed:	

Featuring TANIBAL TECHNOLOGY	PECTRUM ANALYTICAL	1	2	
*	INC.			

CHAIN OF CUSTODY RECORD

		6392
SISTAT - 7 to 10 h	Special Har	J Du
sylphose days	idling:	P

Rush TAT - Date Needed:

4	1	2	1 de	Reling	١						(2)	101000	36397.1	Lab ID:	G=	=1X	O=Oil SO=Soil	DW-Dinking Water		F=Field Filtered 1 7=CH3OH 8=NaH8	1	Telephone #:	Chelsea, MA 02150	281 Eastern Ave	Gulf Oil LP	Report To: Andrew Adams	SPECTRUN
0	2	3	Coll .	Reliaquished by:7								Outfall 003	Outfall 003	Sample 1D:	G= Grab	X2=	SL. Sludge A Indoor/Ambient Air	GW=Groundwater SW=St		8=NaHSO ₄ 9=Deionized Water 10=H ₃ PO ₄	Village M Cod	617.884.5980		m Ave	5	dams	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY
		1611	Mary	Beerived by:							•	15-01	6-77	Date:	C=Compsite	X3=	SG	SW=Surface Water WV		4-HNO ₃	CINIC						-1
	1	M	1	пру:								0000	1000	Time:			Gas	WW Waste Water		S-NaOri a A	1	PON	 	180	Io	Invoice To: Christopher Gill	
												6	0		ype					12=	o sandring		/ellesley	80 William St, Suite 400	Gulf Oil LP	hristoph	Page
	1	6	6/2	D			4		-			WS	WS		VOA	Wals				- Country	And		, MA 02	n St, Su	P	er Gill	2
	1	18	CIP	Date:		-	-			+				-	Ambe	_						0110	Wellesley, MA 02481-3705	ite 400			Q,
	_	7/	1				1				\wedge			-	Clear	-	_	Containers		!	100	Ouote/RON	5				2
		100	00:00	Time:							A	A	4	# of	Plasti	c		iers				yo-					100
Course	Cura	Connection	Con Con	Temp °C								2	×	Cu,	al Rece Pb, Ni		d, Cr,		none								
	3	Clive.	N O) Č								×		LAS	50	_			F	List P		-	+		_		
☐ Ambient ☐ Iced	Condition upon receipt		E-mail to:	EDD format:														or Change	Analucie	List Preservative Code below:		The state of the s	Location:		Site Name:	Project No:	
			aadams@gulfoil.com, cgill@gulfoil.com																	e below:			281/E				All TAT Min. 24 Samples
Refrigerated [Custody Seals:		oil.com, cgill@			0										chlor	rinated	1					281 Eastern Ave, Chelsea		Gulf Ch	Gu	's subject to lal i-hr notification disposed after
☐ Dì VOA Frozen ☐ Soil Jar Frozen	□ Present □ Intact □ Broken		gulfoil.com				Zn - 5 µg/L	Cr - 1 µg/L	Cu - 0.5 µg/L	Cd, Pb, Ni - 0.2 ug/L	Required Minimum Levels:	**LC50 sub to GZA	* Report metals down to MDL		11*	☐ ASP A* ☐ ASP B*	QA*	RCP Report?	Yes No	* additional charges may appply			Cheisea State: MA		Gulf Chelsea Terminal	Gulf Chelsea	All TATs subject to laboratory approval Min. 24-hr notification needed for rushes Samples disposed after 60 days unless otherwise instructed.

This preceding chain of custody has been amended to include the client requested additional analyses as noted below:

Laboratory ID	Client ID	Analysis	Added
SC36391-01	Chelsea Creek	Total Cadmium by ICPMS	7/12/2017
SC36391-01	Chelsea Creek	Total Lead by ICPMS	7/12/2017
SC36391-01	Chelsea Creek	Total Nickel by ICPMS	7/12/2017
SC36391-01	Chelsea Creek	Total Zinc by ICPMS	7/12/2017

This preceding chain of custody has been amended to include the client requested additional analyses as noted below:

Laboratory ID	Client ID	Analysis	Added
SC36392-01	Outfall 003	Total Cadmium by ICPMS	7/12/2017
SC36392-01	Outfall 003	Total Copper by ICPMS	7/12/2017
SC36392-01	Outfall 003	Total Lead by ICPMS	7/12/2017
SC36392-01	Outfall 003	Total Nickel by ICPMS	7/12/2017
SC36392-01	Outfall 003	Total Zinc by ICPMS	7/12/2017

Batch Summary

'[none]'

Subcontracted Analyses

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

1710945

Microbiological Analyses

SC36392-01 (Outfall 003)

<u>1710957</u>

General Chemistry Parameters

1710957-SRM1

1710957-SRM2

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

<u>1710965</u>

Total Metals by EPA 200/6000 Series Methods

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

<u>1711007</u>

General Chemistry Parameters

1711007-BLK1

1711007-BS1

1711007-DUP1

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

1711008

General Chemistry Parameters

1711008-BLK1

1711008-BS1

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

1711096

Semivolatile Organic Compounds by GCMS

1711096-BLK1

1711096-BLK2

1711096-BS1

1711096-BS2

1711096-BSD1

1711096-BSD2

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

SC36392-01RE1 (Outfall 003)

1711116

Volatile Organic Compounds

1711116-BLK1

1711116-BLK2

1711116-BS1

1711116-BS2

1711116-BSD1

1711116-BSD2

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

<u>1711119</u>

General Chemistry Parameters

1711119-BLK1

1711119-BS1

1711119-SRM1

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

<u>1711426</u>

General Chemistry Parameters

1711426-DUP1

1711426-SRM1

1711426-SRM2

SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

1711573

General Chemistry Parameters

1711573-BLK1

1711573-BS1

1711573-CCB1

1711573-CCB2

1711573-CCB3

1711573-CCB4

1711573-CCB5

1711573-CCV1

1711573-CCV2

1711573-CCV3

1711573-CCV4

1711573-CCV5

1711573-SRM1 SC36391-01 (Chelsea Creek)

SC36392-01 (Outfall 003)

1712715

Total Metals by EPA 200 Series Methods

1712715-BLK1

1712715-BS1

1712715-DUP1

1712715-MS1

1712715-PS1

SC36391-01 (Chelsea Creek)

<u>1712781</u>

Total Metals by EPA 200 Series Methods

1712781-BLK1 1712781-BS1 1712781-DUP1 1712781-MS1

1712781-PS1

SC36391-01 (Chelsea Creek)

392124A

Subcontracted Analyses

BY50548-BLK BY50548-DUP BY50548-LCS BY50548-MS

SC36391-01 (Chelsea Creek) SC36392-01 (Outfall 003)

393336A

Subcontracted Analyses

BY50549-BLK BY50549-LCS

SC36392-01 (Outfall 003)

394271A

Subcontracted Analyses

BY63775-BLK BY63775-DUP BY63775-LCS BY63775-MS

SC36392-01 (Outfall 003)

394642A

Subcontracted Analyses

BY63775-BLK BY63775-DUP BY63775-LCS BY63775-MS

SC36392-01 (Outfall 003)

S703654

Semivolatile Organic Compounds by GCMS

\$703654-CAL1 \$703654-CAL2 \$703654-CAL3 \$703654-CAL4 \$703654-CAL5 \$703654-CAL6 \$703654-CAL7 \$703654-CAL8 \$703654-CAL9 \$703654-CALA \$703654-CALA

S703654-ICV1

S703654-LCV1 S703654-LCV2

S703654-TUN1

S705262

Semivolatile Organic Compounds by GCMS

S705262-CAL1 S705262-CAL2 S705262-CAL3 S705262-CAL4 S705262-CAL5 S705262-CAL6 S705262-CAL7 S705262-CAL8 S705262-CAL8 S705262-CAL9 S705262-CALA S705262-ICV1 S705262-LCV1 S705262-LCV2 S705262-LCV3 S705262-LCV3 S705262-TUN1

S705740

Volatile Organic Compounds

\$705740-CAL1 \$705740-CAL2 \$705740-CAL3 \$705740-CAL4 \$705740-CAL5 \$705740-CAL6 \$705740-CAL7 \$705740-CAL8 \$705740-CAL8 \$705740-CAL9 \$705740-CALB \$705740-CALB \$705740-LCV1 \$705740-LCV1 \$705740-LCV2 \$705740-LCV2

S705799

General Chemistry Parameters

\$705799-CAL1 \$705799-CAL2 \$705799-CAL3 \$705799-CAL4 \$705799-CAL5 \$705799-CAL6 \$705799-CAL7 \$705799-CAL8 \$705799-ICB1 \$705799-ICV1

S705898

Volatile Organic Compounds

S705898-CCV1

S705898-TUN1

S706037

Semivolatile Organic Compounds by GCMS

S706037-CCV1

S706037-TUN1

S706180

Semivolatile Organic Compounds by GCMS

S706180-CCV1

S706180-TUN1

S706181

Semivolatile Organic Compounds by GCMS

S706181-CCV1

S706181-TUN1

S706219

Semivolatile Organic Compounds by GCMS

S706219-CCV1

S706219-TUN1